Skip to main content
Log in

Population structure affected by excess gene flow in self-pollinating Elymus nutans and E. burchan-buddae (Triticeae: Poaceae)

  • Original Article
  • Published:
Population Ecology

Abstract

Seed-mediated gene flow can considerably affect population genetic structure of strictly self-pollinating species, but little is known on the extent and nature of such gene flow among pastoral plant populations. Molecular fingerprints provide a powerful tool to address the relevant issues. Genetic structure of 22 populations of two self-pollinating pasture species, Elymus nutans and E. burchan-buddae, collected from various altitudes of the Qinghai–Tibetan Plateau was studied using fluorescence-based amplified fragment length polymorphism technique. Analysis of molecular variance revealed 42.97% and 37.63% among-population variation for the two Elymus species, respectively, indicating that the majority of the total variation presented within populations. This result contradicts the common genetic variation pattern for a selfing plant species: lower genetic variation within populations. Further analysis suggested higher level of gene flow among populations within the same region than among different regions across the sampled area for the two Elymus species. STRUCTURE analyses of the Elymus populations indicated an evident admixture genetic structure, particularly among neighboring populations from the same region, supporting the hypothesis of considerable seed dispersal among populations. The excess within-region gene flow of E. nutans and E. burchan-buddae might be caused by grazing animals that promote seed dispersal when moved around the pastoral lands during foraging. The among-population gene flow promulgated by grazing animals may promote the maintenance of genetic diversity in the pasture species, particularly in small and fragmented populations within a given region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628. doi:10.1126/science.1121543

    Article  PubMed  Google Scholar 

  • Bockelmann AC, Reusch TBH, Bijsma R, Bakker JP (2003) Habitat differentiation vs. isolation—musinatedobjectivesby-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12:505–515. doi:10.1046/j.1365-294X.2003.01706.x

    Article  CAS  PubMed  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87(9):1217–1227

    Article  PubMed  Google Scholar 

  • Chen MJ, Jia ZX (2002) China Forage Flora. China Agricultural Press, Beijing (in chinese)

    Google Scholar 

  • Chen SL, Xia T, Chen SY, Zhou YJ (2005) RAPD profiling in detecting genetic variation in endemic Coelonema (Brassicaceae) of Qinghai-Tibet Plateau of China. Biochem Genet 43:189–202. doi:10.1007/s10528-005-1511-4

    Article  CAS  PubMed  Google Scholar 

  • Couvet D (2002) Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol 16:369–376. doi:10.1046/j.1523-1739.2002.99518.x

    Article  Google Scholar 

  • Darwin C (1859) The origin of species. John Murray, London

    Google Scholar 

  • Diaz O, Salomon B, Von Bothmer R (1999) Genetic variation and differentiation in Nordic populations of Elymus alaskanus (Scrib ex Merr.) Love (Poaceae). Theor Appl Genet 99:210–217. doi:10.1007/s001220051227

    Article  Google Scholar 

  • Diaz O, Sun GL, Salomon B (2000) Levels and distribution of allozyme and RAPD variation in populations of Elymus fibrosus (Schrenk) Tzvel (Poaceae). Genet Resour Crop Evol 47:11–24. doi:10.1023/A:1008719119756

    Article  Google Scholar 

  • Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat 162:691–703. doi:10.1086/379795

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eckstein RL, Oneill RA, Danihelka J, Otte A, Kohler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379. doi:10.1111/j.1365-294X.2006.02944.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447. doi:10.1007/s001220051089

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:74–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in space and time. University of Chicago Press, Chicago, pp 203–236

    Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 108:281–297

    Google Scholar 

  • Hardesty BD, Dick CW, Kremer A, Hubbell S, Bermingham E (2005) Spatial genetic structure of Simarouba amara Aubl (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree on Barro Colorado Island, Panama. Heredity 95:290–297. doi:10.1038/sj.hdy.6800714

    Article  CAS  PubMed  Google Scholar 

  • Honnay O, Adriaens D, Coart E, Jacquemyn H, Roldan-Ruiz I (2007) Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L. Conserv Genet 8:293–303. doi:10.1007/s10592-006-9169-y

    Article  Google Scholar 

  • Janzen DH (1984) Dispersal of small seeds by big herbivores: foliage is the fruit. Am Nat 123:338–353. doi:10.1086/284208

    Article  Google Scholar 

  • Jin Y, Lu BR (2003) Sampling strategy for genetic diversity. Biodivers Sci 11:155–161 (in Chinese with English abstract)

    Google Scholar 

  • Jordano P, Garcia C, Godoy JA, Garcia-Castano JL (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci USA 104:3278–3282. doi:10.1073pnas.0606793104

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55:1560–1568. doi:10.1111/j.0014-3820.2001.tb00675.x

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35. doi:10.1086/338370

    Article  PubMed  Google Scholar 

  • Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wild rye): implications for native grassland restoration. Restor Ecol 4:1–10. doi:10.1111/j.1526-100X.1996.tb00101.x

    Article  Google Scholar 

  • Lu BR (2002) Revision of two Elymus species (Poaceae). Acta Phytotaxon Sin 40:539–545 (in Chinese with English abstract)

    Google Scholar 

  • Lu BR, Salomon B (2004) Differentiation of the StY genomes in Elymus species as referred by meiotic pairing in interspecific hybrids and its evolutionary significance. Biodiversity Sci 12:213–226 (in Chinese with English abstract)

    Google Scholar 

  • Pacala SW, Crawley MJ (1992) Herbivores and plant diversity. Am Nat 140:243–260. doi:10.1086/285411

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2001) GenAlEx V5: genetic. Analysis in excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. http://www.anu.edu.au/BoZo/GenAlEx/

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181. doi:0002-9297/2000/6701-0020

    Article  CAS  PubMed  Google Scholar 

  • Prittinen K, Pusenius J, Tahvanainen J, Rousi M, Heinonen J, Roininen H (2006) Herbivory modifies the genetic structure of birch populations. Oikos 114:465–470. doi:10.1111/j.2006.0030-1299.14725.x

    Article  Google Scholar 

  • Russo SE, Portnoy S, Augspurger CK (2006) Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology 87:3160–3174

    Article  PubMed  Google Scholar 

  • Semagn K, Bjørnstad A, Stedje B, Bekele E (2000) Comparison of multivariate methods for the analysis of genetic resources and adaptation in Phytolacca dodecandra using RAPD. Theor Appl Genet 101:1145–1154. doi:10.1007/s001220051591

    Article  CAS  Google Scholar 

  • Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251. doi:10.1086/285796

    Article  Google Scholar 

  • Sun GL, Salomon B (2003) Microsatellite variability and heterozygote deficiency in the arctic-alpine Alaskan wheatgrass (Elymus alaskanus) complex. Genome 46:729–737. doi:10.1139/G03-052

    Article  CAS  PubMed  Google Scholar 

  • Sun GL, Salomon B, Bothmer RV (2002) Microsatellite polymorphism and genetic differentiation in three Norwegian populations of Elymus alaskanus (Poaceae). Plant Syst Evol 234:101–110. doi:10.1007/s00606-002-0211-3

    Article  CAS  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496. doi:10.1086/303324

    Article  PubMed  Google Scholar 

  • Tero N, Aspi J, Siikamääki P, Jäkäläniemi A (2005) Local genetic population structure in an endangered plant species, Silene tatarica. Heredity 94:478–487. doi:10.1038/sj.hdy.6800642

    Article  CAS  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x

    Article  CAS  PubMed  Google Scholar 

  • Westcott DA, Bentrupperbäumer J, Bradford MG, McKeown A (2005) Incorporating patterns of disperser behavior into models of seed dispersal and its effects on estimated dispersal curves. Oecologia 146:57–67. doi:10.1007/s00442-005-0178-1

    Article  PubMed  Google Scholar 

  • Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution 44:1717–1724

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–259

    CAS  PubMed  Google Scholar 

  • Wu ZY, Peter HR, Hong DY (2006) Flora of China- Poaceae vol. 9. Science Press, Beijing

    Google Scholar 

  • Yan XB, Guo YX, Zhou H, Lu BR, Wang K (2006) Genetic patterns of ten Elymus species from Tibetan and Inner Mongolian Plateaus. Grass Forage Sci 61:398–404. doi:10.1111/j.1365-2494.2006.00547.x

    Article  CAS  Google Scholar 

  • Yan XB, Guo YX, Zhao C, Liu FY, Lu BR (2009) Intra-population genetic diversity of two wheatgrass species along altitude gradient on the Qinghai-Tibetan Plateau: its implication for conservation and utilization. Conser Genet 10:359–367. doi:10.1007/s10592-008-9596-z

    Article  Google Scholar 

  • Zhao QF, Wang G, Li QX, Ma SR, Cui Y, Grillo M (2006) Genetic diversity of five Kobresia species along the eastern Qinghai-Tibet Plateau in China. Hereditas 143:33–40. doi:10.1111/j.2006.0018-0661.01924.x

    Article  PubMed  Google Scholar 

  • Zhao C, Liu FY, Guo YX, Yan XB (2007) Comparison between fluorescence labeling and silver-staining techniques of AFLP. J Gansu Agric Univ 42:125–129 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology (No. 2001CB711103) and National Natural Science (30871531 and 30600033) of China. We are grateful to Prof. K Wang, Z He, and Dr. SY Wang of the Institute of Grassland Sciences, China Agricultural University, Mrs. AQ Gong, YX Xu, H Chang, L Dan, and H Li of the Grassland Management Bureau of Qinghai Province, and Mr. B Ning of the Grassland Management Station of Maqin County, Qinghai Province for their comments and extensive assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Rong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, XB., Guo, YX., Liu, FY. et al. Population structure affected by excess gene flow in self-pollinating Elymus nutans and E. burchan-buddae (Triticeae: Poaceae). Popul Ecol 52, 233–241 (2010). https://doi.org/10.1007/s10144-009-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0169-x

Keywords

Navigation