Skip to main content

Advertisement

Log in

Efficacy of growth factor gene–modified stem cells for motor function after spinal cord injury in rodents: a systematic review and meta‑analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The efficacy of growth factor gene–modified stem cells in treating spinal cord injury (SCI) remains unclear. This study aims to evaluate the effectiveness of growth factor gene–modified stem cells in restoring motor function after SCI. Two reviewers searched four databases, including PubMed, Embase, Web of Science, and Scopus, to identify relevant records. Studies on rodents assessing the efficacy of transplanting growth factor gene–modified stem cells in restoring motor function after SCI were included. The results were reported using the standardized mean difference (SMD) with a 95% confidence interval (95% CI). Analyses showed that growth factor gene–modified stem cell transplantation improved motor function recovery in rodents with SCI compared to the untreated (SMD = 3.98, 95% CI 3.26–4.70, I2 = 86.8%, P < 0.0001) and stem cell (SMD = 2.53, 95% CI 1.93–3.13, I2 = 86.9%, P < 0.0001) groups. Using growth factor gene–modified neural stem/histone cells enhanced treatment efficacy. In addition, the effectiveness increased when viral vectors were employed for gene modification and high transplantation doses were administered during the subacute phase. Stem cells derived from the human umbilical cord exhibited an advantage in motor function recovery. However, the transplantation of growth factor gene–modified stem cells did not significantly improve motor function in male rodents (P = 0.136). Transplantation of growth factor gene–modified stem cells improved motor function in rodents after SCI, but claims of enhanced efficacy should be approached with caution. The safety of gene modification remains a significant concern, requiring additional efforts to enhance its clinical translatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Yuan S, Shi Z, Cao F, Li J, Feng S (2018) Epidemiological features of spinal cord injury in China: a systematic review. Front Neurol 9:683. https://doi.org/10.3389/fneur.2018.00683

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jazayeri SB, Rahimi-Movaghar V (2014) Estimating TSCI incidence worldwide: a long road to drive. Spinal Cord 52(6):502. https://doi.org/10.1038/sc.2014.51

    Article  PubMed  CAS  Google Scholar 

  3. Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X (2020) Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 127:110136. https://doi.org/10.1016/j.biopha.2020.110136

    Article  PubMed  CAS  Google Scholar 

  4. Li F, Wang H, Chen H, Guo J, Dang X, Ru Y, Wang H (2022) Mechanism of ferroptosis and its role in spinal cord injury. Front Neurol 13:926780. https://doi.org/10.3389/fneur.2022.926780

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin S, Mei X (2020) Role of NLRP3 inflammasomes in neuroinflammation diseases. Eur Neurol 83(6):576–580. https://doi.org/10.1159/000509798

    Article  PubMed  CAS  Google Scholar 

  6. Zhou H, Jing S, Xiong W, Zhu Y, Duan X, Li R, Peng Y, Kumeria T, He Y, Ye Q (2023) Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury. J Nanobiotechnology 21(1):316. https://doi.org/10.1186/s12951-023-02001-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Anderson MA, Squair JW, Gautier M, Hutson TH, Kathe C, Barraud Q, Bloch J, Courtine G (2022) Natural and targeted circuit reorganization after spinal cord injury. Nat Neurosci 25(12):1584–1596. https://doi.org/10.1038/s41593-022-01196-1

    Article  PubMed  CAS  Google Scholar 

  8. Cao Y, DiPiro ND, Jarnecke M, Krause JS (2022) Social participation as a mediator of the relationships of socioeconomic factors and longevity after traumatic spinal cord injury. Spinal Cord 60(9):799–804. https://doi.org/10.1038/s41393-022-00794-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM (2020) Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 15(8):1437–1450. https://doi.org/10.4103/1673-5374.274332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kiyotake EA, Martin MD, Detamore MS (2022) Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 139:43–64. https://doi.org/10.1016/j.actbio.2020.12.021

    Article  PubMed  CAS  Google Scholar 

  11. Zipser CM, Cragg JJ, Guest JD, Fehlings MG, Jutzeler CR, Anderson AJ, Curt A (2022) Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 21(7):659–670. https://doi.org/10.1016/s1474-4422(21)00464-6

    Article  PubMed  Google Scholar 

  12. Mohammed R, Opara K, Lall R, Ojha U, Xiang J (2020) Evaluating the effectiveness of anti-Nogo treatment in spinal cord injuries. Neural Dev 15(1):1. https://doi.org/10.1186/s13064-020-0138-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Roy A, Pathak Z, Kumar H (2021) Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 343:113794. https://doi.org/10.1016/j.expneurol.2021.113794

    Article  PubMed  CAS  Google Scholar 

  14. Li J (2019) Weak direct current (DC) electric fields as a therapy for spinal cord injuries: review and advancement of the oscillating field stimulator (OFS). Neurosurg Rev 42(4):825–834. https://doi.org/10.1007/s10143-018-01068-y

    Article  PubMed  Google Scholar 

  15. El Ouaamari Y, Van den Bos J, Willekens B, Cools N, Wens I (2023) Neurotrophic factors as regenerative therapy for neurodegenerative diseases: current status, challenges and future perspectives. Int J Mol Sci 24(4):3866. https://doi.org/10.3390/ijms24043866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chang DJ, Cho HY, Hwang S, Lee N, Choi C, Lee H, Hong KS, Oh SH, Kim HS, Shin DA, Yoon YW, Song J (2021) Therapeutic effect of BDNF-overexpressing human neural stem cells (F3.BDNF) in a contusion model of spinal cord injury in rats. Int J Mol Sci 22(13):6970. https://doi.org/10.3390/ijms22136970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M (2022) Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 45(6):3469–3488. https://doi.org/10.1007/s10143-022-01859-4

    Article  PubMed  Google Scholar 

  18. Feng Y, Li Y, Shen PP, Wang B (2022) Gene-modified stem cells for spinal cord injury: a promising better alternative therapy. Stem Cell Rev Rep 18(8):2662–2682. https://doi.org/10.1007/s12015-022-10387-z

    Article  PubMed  Google Scholar 

  19. Nie WB, Zhang D, Wang LS (2020) Growth factor gene-modified mesenchymal stem cells in tissue regeneration. Drug Des Devel Ther 14:1241–1256. https://doi.org/10.2147/dddt.s243944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pan B, Wu X, Zeng X, Chen J, Zhang W, Cheng X, Wan Y, Li X (2023) Transplantation of Wnt4-modified neural stem cells mediate M2 polarization to improve inflammatory micro-environment of spinal cord injury. Cell Prolif 56(8):e13415. https://doi.org/10.1111/cpr.13415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li X, Peng Z, Long L, Lu X, Zhu K, Tuo Y, Chen N, Zhao X, Wang L, Wan Y (2020) Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury. Exp Mol Med 52(12):2020–2033. https://doi.org/10.1038/s12276-020-00536-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  23. Sistrom CL, Mergo PJ (2000) A simple method for obtaining original data from published graphs and plots. AJR Am J Roentgenol 174(5):1241–1244. https://doi.org/10.2214/ajr.174.5.1741241

    Article  PubMed  CAS  Google Scholar 

  24. Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, Shokraneh F, Rahimi-Movaghar V (2016) Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 54(8):579–583. https://doi.org/10.1038/sc.2015.215

    Article  PubMed  CAS  Google Scholar 

  25. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x

    Article  CAS  Google Scholar 

  26. Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, Delshad AR, Sadeghizade M, Taheri T (2015) Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy 17(7):912–921. https://doi.org/10.1016/j.jcyt.2015.03.689

    Article  CAS  Google Scholar 

  27. Wang L, Gu S, Gan J, Tian Y, Zhang F, Zhao H, Lei D (2021) Neural stem cells overexpressing nerve growth factor improve functional recovery in rats following spinal cord injury via modulating microenvironment and enhancing endogenous neurogenesis. Front Cell Neurosci 15:773375. https://doi.org/10.3389/fncel.2021.773375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hodgetts SI, Yoon JH, Fogliani A, Akinpelu EA, Baron-Heeris D, Houwers IGJ, Wheeler LPG, Majda BT, Santhakumar S, Lovett SJ, Duce E, Pollett MA, Wiseman TM, Fehily B, Harvey AR (2018) Cortical AAV-CNTF gene therapy combined with intraspinal mesenchymal precursor cell transplantation promotes functional and morphological outcomes after spinal cord injury in adult rats. Neural Plast 2018:9828725. https://doi.org/10.1155/2018/9828725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hu JG, Shen L, Wang R, Wang QY, Zhang C, Xi J, Ma SF, Zhou JS, Lü HZ (2012) Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury. Neurotherapeutics 9(2):422–445. https://doi.org/10.1007/s13311-011-0090-9

    Article  PubMed  CAS  Google Scholar 

  30. Jia Y, Wu D, Zhang R, Shuang W, Sun J, Hao H, An Q, Liu Q (2014) Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats. Neurosci Lett 573:46–51. https://doi.org/10.1016/j.neulet.2014.05.010

    Article  PubMed  CAS  Google Scholar 

  31. Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2009) Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 4(3):e4987. https://doi.org/10.1371/journal.pone.0004987

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kumagai G, Tsoulfas P, Toh S, McNiece I, Bramlett HM, Dietrich WD (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol 248:369–380. https://doi.org/10.1016/j.expneurol.2013.06.028

    Article  PubMed  CAS  Google Scholar 

  33. Meng XT, Li C, Dong ZY, Liu JM, Li W, Liu Y, Xue H, Chen D (2008) Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int 32(12):1546–1558. https://doi.org/10.1016/j.cellbi.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  34. Mukhamedshina YO, Garanina EE, Masgutova GA, Galieva LR, Sanatova ER, Chelyshev YA, Rizvanov AA (2016) Assessment of glial scar, tissue sparing, behavioral recovery and axonal regeneration following acute transplantation of genetically modified human umbilical cord blood cells in a rat model of spinal cord contusion. PLoS One 11(3):e0151745. https://doi.org/10.1371/journal.pone.0151745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pu Y, Meng K, Gu C, Wang L, Zhang X (2017) Thrombospondin-1 modified bone marrow mesenchymal stem cells (BMSCs) promote neurite outgrowth and functional recovery in rats with spinal cord injury. Oncotarget 8(56):96276–96289. https://doi.org/10.18632/oncotarget.22018

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–14941. https://doi.org/10.1523/jneurosci.2769-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Seo DK, Kim JH, Min J, Yoon HH, Shin ES, Kim SW, Jeon SR (2017) Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir (Wien) 159(5):947–957. https://doi.org/10.1007/s00701-017-3097-0

    Article  PubMed  Google Scholar 

  38. Shahrezaie M, Mansour RN, Nazari B, Hassannia H, Hosseini F, Mahboudi H, Eftekhary M, Kehtari M, Veshkini A, Ahmadi Vasmehjani A, Enderami SE (2017) Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow stem cells in a rat model. Biologicals 50:73–80. https://doi.org/10.1016/j.biologicals.2017.08.009

    Article  PubMed  CAS  Google Scholar 

  39. Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, Xu BN, Jiang XD, Xu RX (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102–113. https://doi.org/10.1016/j.brainres.2011.03.019

    Article  PubMed  CAS  Google Scholar 

  40. Stewart AN, Kendziorski G, Deak ZM, Bartosek NC, Rezmer BE, Jenrow K, Rossignol J, Dunbar GL (2018) Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats. Brain Res 1699:19–33. https://doi.org/10.1016/j.brainres.2018.06.002

    Article  PubMed  CAS  Google Scholar 

  41. Stewart AN, Kendziorski G, Deak ZM, Brown DJ, Fini MN, Copely KL, Rossignol J, Dunbar GL (2017) Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury. Brain Res 1672:91–105. https://doi.org/10.1016/j.brainres.2017.07.005

    Article  PubMed  CAS  Google Scholar 

  42. Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, Lu M, Nan Z, Rossignol J, Dunbar GL (2017) SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Restor Neurol Neurosci 35(4):395–411. https://doi.org/10.3233/rnn-160678

    Article  PubMed  CAS  Google Scholar 

  43. Sugiyama K, Nagashima K, Miwa T, Shimizu Y, Kawaguchi T, Iida K, Tamaoki N, Hatakeyama D, Aoki H, Abe C, Morita H, Kunisada T, Shibata T, Fukumitsu H, Tezuka KI (2019) FGF2-responsive genes in human dental pulp cells assessed using a rat spinal cord injury model. J Bone Miner Metab 37(3):467–474. https://doi.org/10.1007/s00774-018-0954-8

    Article  PubMed  CAS  Google Scholar 

  44. Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, Zheng J, Zhao P, Li S, Wang X, Li L (2016) Adipose-derived stem cells expressing the neurogenin-2 promote functional recovery after spinal cord injury in rat. Cell Mol Neurobiol 36(5):657–667. https://doi.org/10.1007/s10571-015-0246-y

    Article  PubMed  CAS  Google Scholar 

  45. Wang LJ, Zhang RP, Li JD (2014) Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien) 156(7):1409–1418. https://doi.org/10.1007/s00701-014-2089-6

    Article  PubMed  Google Scholar 

  46. Wang Y, Lue G (2010) Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors? Neural Regen Res 5(17):1303–1307. https://doi.org/10.3969/j.issn.1673-5374.2010.17.004

    Article  CAS  Google Scholar 

  47. Wu Q, Xiang Z, Ying Y, Huang Z, Tu Y, Chen M, Ye J, Dou H, Sheng S, Li X, Ying W, Zhu S (2021) Nerve growth factor (NGF) with hypoxia response elements loaded by adeno-associated virus (AAV) combined with neural stem cells improve the spinal cord injury recovery. Cell Death Discov 7(1):301. https://doi.org/10.1038/s41420-021-00701-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Xiong LL, Li Y, Shang FF, Chen SW, Chen H, Ju SM, Zou Y, Tian HL, Wang TH, Luo CZ, Wang XY (2016) Chondroitinase administration and pcDNA3.1-BDNF-BMSC transplantation promote motor functional recovery associated with NGF expression in spinal cord-transected rat. Spinal Cord 54(12):1088–1095. https://doi.org/10.1038/sc.2016.55

    Article  PubMed  Google Scholar 

  49. Yoon HH, Lee HJ, Min J, Kim JH, Park JH, Kim JH, Kim SW, Lee H, Jeon SR (2021) Optimal ratio of Wnt3a expression in human mesenchymal stem cells promotes axonal regeneration in spinal cord injured rat model. J Korean Neurosurg Soc 64(5):705–715. https://doi.org/10.3340/jkns.2021.0003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang RP, Wang LJ, He S, Xie J, Li JD (2016) Effects of magnetically guided, SPIO-labeled, and neurotrophin-3 gene-modified bone mesenchymal stem cells in a rat model of spinal cord injury. Stem Cells Int 2016:2018474. https://doi.org/10.1155/2016/2018474

    Article  PubMed  CAS  Google Scholar 

  51. Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, Chen SJ, Li Y, Bruce IC, Wu W (2010) Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res 1359:256–271. https://doi.org/10.1016/j.brainres.2010.08.072

    Article  CAS  Google Scholar 

  52. Zhao H, Cheng L, Du X, Hou Y, Liu Y, Cui Z, Nie L (2016) Transplantation of cerebral dopamine neurotrophic factor transducted BMSCs in contusion spinal cord injury of rats: promotion of nerve regeneration by alleviating neuroinflammation. Mol Neurobiol 53(1):187–199. https://doi.org/10.1007/s12035-014-9000-6

    Article  PubMed  CAS  Google Scholar 

  53. Zhao M, Chen B, Wei X, Hou S (2016) Implantation of neurotrophin gene modified bone derived mesenchymal stem cells to repair spinal cord complete transection injury in adult rats. International Journal of Clinical and Experimental Pathology 9(2):695–704. https://www.webofscience.com/wos/alldb/full-record/WOS:000371809200025

  54. Zhao T, Yan W, Xu K, Qi Y, Dai X, Shi Z (2013) Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model. Cytotherapy 15(7):792–804. https://doi.org/10.1016/j.jcyt.2013.04.004

    Article  PubMed  CAS  Google Scholar 

  55. Zhu S, Chen M, Deng L, Zhang J, Ni W, Wang X, Yao F, Li X, Xu H, Xu J, Xiao J (2020) The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury. Stem Cells Transl Med 9(5):603–619. https://doi.org/10.1002/sctm.19-0282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, Liu S, Cui Y, Wang B (2021) Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3β signaling pathway. Stem Cell Res Ther 12(1):468. https://doi.org/10.1186/s13287-021-02537-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhang L, Gu S, Zhao C, Wen T (2007) Combined treatment of neurotrophin-3 gene and neural stem cells is propitious to functional recovery after spinal cord injury. Cell Transplant 16(5):475–481. https://doi.org/10.3727/000000007783464902

    Article  ADS  PubMed  CAS  Google Scholar 

  58. Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP (2021) Genetic engineering as a strategy to improve the therapeutic efficacy of mesenchymal stem/stromal cells in regenerative medicine. Front Cell Dev Biol 8:737. https://doi.org/10.3389/fcell.2020.00737

    Article  Google Scholar 

  59. Huang L, Fu C, Xiong F, He C, Wei Q (2022) Stem cell therapy for spinal cord injury. Cell Transplant 30:963689721989266. https://doi.org/10.1177/0963689721989266

    Article  Google Scholar 

  60. Havelikova K, Smejkalova B, Jendelova P (2022) Neurogenesis as a tool for spinal cord injury. Int J Mol Sci 23(7):3728. https://doi.org/10.3390/ijms23073728

    Article  PubMed Central  CAS  Google Scholar 

  61. Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG (2020) The leading edge: emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 9(12):1509–1530. https://doi.org/10.1002/sctm.19-0135

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M (2016) Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr Neuropharmacol 14(6):641–653. https://doi.org/10.2174/1570159x14666160309123554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V (2000) Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17(1):1–17. https://doi.org/10.1089/neu.2000.17.1

    Article  PubMed  CAS  Google Scholar 

  64. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, Moghadas Jafari A, Asady H, Razavi Tousi SM, Hosseini M (2016) Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience 322:377–397. https://doi.org/10.1016/j.neuroscience.2016.02.034

    Article  PubMed  CAS  Google Scholar 

  65. Kao TCC, Chang LW (1997) The mechanism of spinal cord cavitation following spinal cord transection. J Neurosurg 46(2):197–209. https://doi.org/10.3171/jns.1977.46.2.0197

    Article  Google Scholar 

  66. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89. https://pubmed.ncbi.nlm.nih.gov/8420126/

  67. Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH (2020) Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27(3):430-440.e5. https://doi.org/10.1016/j.stem.2020.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chaudhari LR, Kawale AA, Desai SS, Kashte SB, Joshi MG (2023) Pathophysiology of spinal cord injury and tissue engineering approach for its neuronal regeneration: current status and future prospects. Adv Exp Med Biol 1409:51–81. https://doi.org/10.1007/5584_2022_731

    Article  PubMed  CAS  Google Scholar 

  69. Ji WC, Li M, Jiang WT, Ma X, Li J (2020) Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury. Neurol Res 42(5):361–371. https://doi.org/10.1080/01616412.2020.1735819

    Article  PubMed  CAS  Google Scholar 

  70. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64. https://doi.org/10.1016/j.expneurol.2005.10.029

    Article  PubMed  CAS  Google Scholar 

  71. Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M (2016) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7:36. https://doi.org/10.1186/s13287-016-0295-2

    Article  PubMed  PubMed Central  Google Scholar 

  72. Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22(7):1263–1278. https://doi.org/10.1634/stemcells.2004-0024

    Article  PubMed  CAS  Google Scholar 

  73. Veeravalli KK, Dasari VR, Tsung AJ, Dinh DH, Gujrati M, Fassett D, Rao JS (2009) Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiol Dis 36(1):200–212. https://doi.org/10.1016/j.nbd.2009.07.012

    Article  PubMed  CAS  Google Scholar 

  74. Lundstrom K (2023) Viral vectors in gene therapy: where do we stand in 2023? Viruses 15(3):698. https://doi.org/10.3390/v15030698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93(21):11382–11388. https://doi.org/10.1073/pnas.93.21.11382

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dewey RA, Morrissey G, Cowsill CM, Stone D, Bolognani F, Dodd NJ, Southgate TD, Klatzmann D, Lassmann H, Castro MG, Löwenstein PR (1999) Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 5(11):1256–1263. https://doi.org/10.1038/15207

    Article  PubMed  CAS  Google Scholar 

  77. Zu H, Gao D (2021) Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 23(4):78. https://doi.org/10.1208/s12248-021-00608-7

    Article  PubMed  Google Scholar 

  78. Qian K, Xu TY, Wang X, Ma T, Zhang KX, Yang K, Qian TD, Shi J, Li LX, Wang Z (2020) Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res 15(4):748–758. https://doi.org/10.4103/1673-5374.266915

    Article  PubMed  Google Scholar 

  79. Kumamaru H, Ohkawa Y, Saiwai H, Yamada H, Kubota K, Kobayakawa K, Akashi K, Okano H, Iwamoto Y, Okada S (2012) Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nat Commun 3:1140. https://doi.org/10.1038/ncomms2132

    Article  ADS  PubMed  CAS  Google Scholar 

  80. Lu Y, Zhang W, Tian Z, Liang Q, Liu C, Wu Y, Zhang L, Rong L (2022) The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: a systematic review and network meta-analysis based on animal studies. Stem Cell Res Ther 13(1):441. https://doi.org/10.1186/s13287-022-03103-8

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sterner RC, Sterner RM (2023) Immune response following traumatic spinal cord injury: pathophysiology and therapies. Front Immunol 13:1084101. https://doi.org/10.3389/fimmu.2022.1084101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Park DY, Mayle RE, Smith RL, Corcoran-Schwartz I, Kharazi AI, Cheng I (2013) Combined transplantation of human neuronal and mesenchymal stem cells following spinal cord injury. Global Spine J 3(1):1–6. https://doi.org/10.1055/s-0033-1337118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by Special Project of Scientific Research on Traditional Chinese Medicine in Henan Province (Grant number 2022JDZX015).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Wen-Ya Shang and Ya-Feng Ren. Data collection was performed by Wen-Ya Shang, Xiao-Meng Huang, Zhi-Lan Zhang, and Jing Huang. Data analysis was performed by Wen-Ya Shang and Bing Li. The first draft was written by Wen-Ya Shang. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ya-Feng Ren.

Ethics declarations

Ethics approval

The current study was approved by Henan University of Chinese Medicine.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 333794 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, WY., Ren, YF., LI, B. et al. Efficacy of growth factor gene–modified stem cells for motor function after spinal cord injury in rodents: a systematic review and meta‑analysis. Neurosurg Rev 47, 87 (2024). https://doi.org/10.1007/s10143-024-02314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-024-02314-2

Keywords

Navigation