Skip to main content
Log in

Differences in invasiveness and recurrence rate among nonfunctioning pituitary neuroendocrine tumors depending on tumor subtype

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Purpose

To clarify the invasiveness to surrounding structures and recurrence rate of each subtype of nonfunctioning pituitary neuroendocrine tumor (Pit-NETs) according to the WHO 2022 classification.

Methods

This retrospective study utilized data from 292 patients with nonfunctioning Pit-NETs treated with initial transsphenoidal surgery. Recurrence was evaluated on 113 patients who were available for a magnetic resonance imaging follow-up ≥ 60 months. All tumors were assessed by immunohistochemical staining for Pit-1, T-PIT, and GATA3. Invasiveness to surrounding structures was evaluated based on intraoperative findings.

Results

Cavernous sinus invasion was found in 47.5% of null cell tumors, 50.0% of Pit-1 lineage tumors, 31.8% of corticotroph tumors, and 18.3% of gonadotroph tumors. Dura mater defects in the floor of sellar turcica, indicating dural invasion, were found in 44.3% of null cell tumors, 36.4% of corticotroph tumors, 16.7% of Pit-1 lineage tumors, and 17.3% of gonadotroph tumors. In logistic regression analysis, Pit-1 (OR 5.90, 95% CI 1.71–20.4, P = 0.0050) and null tumors (OR 4.14, 95% CI 1.86–9.23, P = 0.0005) were associated with cavernous sinus invasion. Recurrence was found in 8 (4.9%) patients, but without significant differences between tumor subtypes. The presence of cavernous sinus invasion was correlated with recurrence (HR = 1.95, 95% CI 1.10–3.46, P = 0.0227).

Conclusion

Among nonfunctioning Pit-NETs, Pit-1 lineage tumors tend to invade the cavernous sinus, corticotroph tumors may produce dura mater defects, and null cell tumors tend to cause both. Pit-NETs with cavernous sinus invasion require a careful attention to recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References 

  1. (2014) Brain tumor registry of Japan (2001–2004). Neurol Med Chir (Tokyo) 54(Suppl):1–102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740110/

  2. Asa SL, Mete O, Perry A, Osamura RY (2022) Overview of the 2022 WHO classification of pituitary tumors. Endocr Pathol 33:6–26. https://doi.org/10.1007/s12022-022-09703-7

    Article  PubMed  CAS  Google Scholar 

  3. Nishioka H (2023) Aggressive pituitary tumors (PitNETs). Endocr J 70:241–248. https://doi.org/10.1507/endocrj.EJ23-0007

    Article  PubMed  CAS  Google Scholar 

  4. Trouillas J, Roy P, Sturm N et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135. https://doi.org/10.1007/s00401-013-1084-y

    Article  PubMed  Google Scholar 

  5. Ntali G, Wass JA (2018) Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21:111–118. https://doi.org/10.1007/s11102-018-0869-3

    Article  PubMed  Google Scholar 

  6. Trouillas J, Jaffrain-Rea ML, Vasiljevic A, Raverot G, Roncaroli F, Villa C (2020) How to classify the pituitary neuroendocrine tumors (PitNET)s in 2020. Cancers (Basel) 12:514. https://doi.org/10.3390/cancers12020514

    Article  PubMed  CAS  Google Scholar 

  7. Yamada S, Ohyama K, Taguchi M et al (2007) A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61:580–584. https://doi.org/10.1227/01.NEU.0000290906.53685.79

    Article  PubMed  Google Scholar 

  8. Nishioka H, Inoshita N, Mete O et al (2015) The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol 26:349–355. https://doi.org/10.1007/s12022-015-9398-z

    Article  PubMed  CAS  Google Scholar 

  9. Haddad AF, Young JS, Oh T et al (2020) Clinical characteristics and outcomes of null-cell versus silent gonadotroph adenomas in a series of 1166 pituitary adenomas from a single institution. Neurosurg Focus 48:E13. https://doi.org/10.3171/2020.3.FOCUS20114

    Article  PubMed  Google Scholar 

  10. Taguchi A, Kinoshita Y, Tokumo K et al (2022) Usefulness of critical flicker fusion frequency measurement and its laterality for evaluating compressive optic neuropathy due to pituitary neuroendocrine tumors. Neurosurg Rev 46:4. https://doi.org/10.1007/s10143-022-01915-z

    Article  PubMed  Google Scholar 

  11. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617. https://doi.org/10.1227/00006123-199310000-00008

    Article  PubMed  CAS  Google Scholar 

  12. Kinoshita Y, Tominaga A, Usui S et al (2016) The surgical side effects of pseudocapsular resection in nonfunctioning pituitary adenomas. World Neurosurg 93:430–435. https://doi.org/10.1016/j.wneu.2016.07.036

    Article  PubMed  Google Scholar 

  13. Mete O, Kefeli M, Çalışkan S, Asa SL (2019) GATA3 immunoreactivity expands the transcription factor profile of pituitary neuroendocrine tumors. Mod Pathol 32:484–489. https://doi.org/10.1038/s41379-018-0167-7

    Article  PubMed  CAS  Google Scholar 

  14. Turchini J, Sioson L, Clarkson A, Sheen A, Gill AJ (2020) Utility of GATA-3 expression in the analysis of pituitary neuroendocrine tumour (PitNET) transcription factors. Endocr Pathol 31:150–155. https://doi.org/10.1007/s12022-020-09615-4

    Article  PubMed  Google Scholar 

  15. Mayson SE, Snyder PJ (2014) Silent (clinically nonfunctioning) pituitary adenomas. J Neurooncol 117:429–436. https://doi.org/10.1007/s11060-014-1425-2

    Article  PubMed  CAS  Google Scholar 

  16. Jiang S, Zhu J, Feng M et al (2021) Clinical profiles of silent corticotroph adenomas compared with silent gonadotroph adenomas after adopting the 2017 WHO pituitary classification system. Pituitary 24:564–573. https://doi.org/10.1007/s11102-021-01133-8

    Article  PubMed  CAS  Google Scholar 

  17. Anat Ben-Shlomo SM (2011) Chapter 2: Hypothalamic regulation of anterior pituitary function. In: Anat Ben-Shlomo, Shlomo Melmed. (ed) The Pituitary (Third edition), pp. 21–45. Academic Press (2011), https://www.academia.edu/19700586/The_Pituitary_3rd_Edition. Accessed 22 June 2023.

  18. Perez-Rivas LG, Simon J, Albani A et al (2022) TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol Commun 10:139. https://doi.org/10.1186/s40478-022-01437-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. McCormack A, Dekkers OM, Petersenn S et al (2018) Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol 178:265–276. https://doi.org/10.1530/EJE-17-0933

    Article  PubMed  CAS  Google Scholar 

  20. Asmaro K, Zhang M, Rodrigues AJ et al (2023) Cytodifferentiation of pituitary tumors influences pathogenesis and cavernous sinus invasion. J Neurol Surg 28:1–9. https://doi.org/10.3171/2023.3.JNS221949

    Article  Google Scholar 

  21. Nishioka H, Fukuhara N, Horiguchi K, Yamada S (2014) Aggressive transsphenoidal resection of tumors invading the cavernous sinus in patients with acromegaly: predictive factors, strategies, and outcomes. J Neurosurg 121:505–510. https://doi.org/10.3171/2014.3.JNS132214

    Article  PubMed  Google Scholar 

  22. Langlois F, Woltjer R, Cetas JS, Fleseriu M (2018) Silent somatotroph pituitary adenomas: an update. Pituitary 21:194–202. https://doi.org/10.1007/s11102-017-0858-y

    Article  PubMed  Google Scholar 

  23. Cossu G, Daniel RT, Pierzchala K et al (2019) Thyrotropin-secreting pituitary adenomas: a systematic review and meta-analysis of postoperative outcomes and management. Pituitary 22:79–88. https://doi.org/10.1007/s11102-018-0921-3

    Article  PubMed  CAS  Google Scholar 

  24. Taguchi A, Kinoshita Y, Yamasaki F, Arita K, Tominaga A (2021) Clinical characteristics and thyroid hormone dynamics of thyrotropin-secreting pituitary adenomas at a single institution. Endocrine 73:151–159. https://doi.org/10.1007/s12020-020-02556-2

    Article  PubMed  CAS  Google Scholar 

  25. Yamada S, Fukuhara N, Horiguchi K et al (2014) Clinicopathological characteristics and therapeutic outcomes in thyrotropin-secreting pituitary adenomas: a single-center study of 90 cases. J Neurosurg 121:1462–1473. https://doi.org/10.3171/2014.7.JNS1471

    Article  PubMed  Google Scholar 

  26. Trouillas J, Delgrange E, Wierinckx A et al (2019) Clinical, pathological, and molecular factors of aggressiveness in lactotroph tumours. Neuroendocrinology 109:70–76. https://doi.org/10.1159/000499382

    Article  PubMed  CAS  Google Scholar 

  27. Mohyeldin A, Katznelson LJ, Hoffman AR et al (2022) Prospective intraoperative and histologic evaluation of cavernous sinus medial wall invasion by pituitary adenomas and its implications for acromegaly remission outcomes. Sci Rep 12:9919. https://doi.org/10.1038/s41598-022-12980-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee JC, Pekmezci M, Lavezo JL et al (2017) Utility of Pit-1 immunostaining in distinguishing pituitary adenomas of primitive differentiation from null cell adenomas. Endocr Pathol 28:287–292. https://doi.org/10.1007/s12022-017-9503-6

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd RV, Landefeld TD, Maslar I, Frohman LA (1985) Diethylstilbestrol inhibits tumor growth and prolactin production in rat pituitary tumors. Am J Pathol 118:379–386

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Ishida A, Shiramizu H, Yoshimoto H et al (2022) Resection of the cavernous sinus medial wall improves remission rate in functioning pituitary tumors: retrospective analysis of 248 consecutive cases. Neurosurgery 91:775–781. https://doi.org/10.1227/neu.0000000000002109

    Article  PubMed  Google Scholar 

  31. Zhao J, Ji C, Cheng H et al (2023) Digital image analysis allows objective stratification of patients with silent PIT1-lineage pituitary neuroendocrine tumors. J Pathol Clin Res 9:488–497. https://doi.org/10.1002/cjp2.340

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lenders NF, Earls PE, Wilkinson AC et al (2023) Predictors of pituitary tumour behaviour: an analysis from long-term follow-up in 2 tertiary centres. Eur J Endocrinol 189:106–114. https://doi.org/10.1093/ejendo/lvad079

    Article  PubMed  Google Scholar 

  33. Tadokoro K, Wolf C, Toth J et al (2022) Ki-67/MIB-1 and recurrence in pituitary adenoma. J Neurol Surg B Skull Base 83(Suppl 2):e580–e590. https://doi.org/10.1055/s-0041-1735874

    Article  PubMed  Google Scholar 

  34. Ng S, Messerer M, Engelhardt J et al (2021) Aggressive pituitary neuroendocrine tumors: current practices, controversies, and perspectives, on behalf of the EANS skull base section. Acta Neurochir (Wien) 163:3131–3142. https://doi.org/10.1007/s00701-021-04953-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the work of past and present members of Hiroshima University Hospital. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

This work was supported by JSPS Grant-in-Aid for Scientific Research (C) (Grant number [JP23K06697]).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Akira Taguchi. Acquisition of data: Akira Taguchi, Yasuyuki Kinoshita, Shumpei Onishi, Atsushi Tominaga. Analysis and interpretation: Akira Taguchi, Fumiyuki Yamasaki, Yasuyuki Kinoshita, Vishwa Jeet Amatya, Shumpei Onishi, Yukari Go. Drafting the article: Akira Taguchi. Critically revising the article: Fumiyuki Yamasaki, Yasuyuki Kinoshita, Yukio Takeshima, Nobutaka Horie. Reviewed submitted version of manuscript: all authors. Statistical analysis: Akira. Taguchi, Yasuyuki Kinoshita, Fumiyuki Yamasaki. Administrative/technical/material support: Vishwa Jeet Amatya, Atsushi Tominaga, Yukio Takeshima. Study supervision: Fumiyuki Yamasaki, Nobutaka Horie.

Corresponding author

Correspondence to Akira Taguchi.

Ethics declarations

Ethics approval

This study was conducted retrospectively, utilized data obtained for clinical purposes, and was approved by the ethics committee of Hiroshima University Hospital (E-2022, May 18, 2020).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Informed consent

As patient data in this study are completely anonymized, any identification of individuals is difficult. Pertinent research content is available in the homepage of our institution.

Research involving participants and/or animals

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, A., Kinoshita, Y., Amatya, V.J. et al. Differences in invasiveness and recurrence rate among nonfunctioning pituitary neuroendocrine tumors depending on tumor subtype. Neurosurg Rev 46, 317 (2023). https://doi.org/10.1007/s10143-023-02234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02234-7

Keywords

Navigation