Skip to main content

Advertisement

Log in

Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Intracranial aneurysm (IA) is an abnormal focal dilation of an artery in the brain that results from a weakening of the inner muscular layer of a blood vessel wall. IAs represent the most common etiology of nontraumatic subarachnoid hemorrhage (SAH). Despite technological advances in the treatment and use of new diagnostic methods for IAs, they continue to pose a significant risk of mortality and disability. Thus, early recognition of IA with a high risk of rupture is crucial for the stratification of patients with such a formidable disease. MicroRNAs (miRNA) are endogenous noncoding RNAs of 18–22 nucleotides that regulate gene expression at the post-transcriptional level through interaction with 3′-untranslated regions (3′UTRs) of the target mRNAs. MiRNAs are involved in the pathogenesis of IAs, including in the mechanisms of formation, growth, and rupture. It is known that in many biological fluids of the human body, such as blood or cerebrospinal fluid (CSF), numerous miRNAs, called circulating miRNAs, have been detected. The expression profile of circulating miRNAs represents a certain part of the cells in which they are modified and secreted in accordance with the physiological or pathological conditions of these cells. Circulating miRNAs can be secreted from cells into human biological fluids in extracellular vesicles or can be bound to Ago2 protein, which makes them resistant to the effects of RNAse. Therefore, circulating miRNAs are considered as new potential biomarkers of interest in many diseases, including IA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rouchaud A, Brandt MD, Rydberg AM, Kadirvel R, Flemming K, Kallmes DF, Brinjikji W (2016) Prevalence of intracranial aneurysms in patients with aortic aneurysms. AJNR Am J Neuroradiol 37(9):1664–1668. https://doi.org/10.3174/ajnr.A4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samaniego EA, Roa JA, Hasan D (2019) Vessel wall imaging in intracranial aneurysms. J Neurointerv Surg 11(11):1105–1112. https://doi.org/10.1136/neurintsurg-2019-014938

    Article  PubMed  Google Scholar 

  3. D’Souza S (2015) Aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 27(3):222–240. https://doi.org/10.1097/ANA.0000000000000130

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ajiboye N, Chalouhi N, Starke RM, Zanaty M, Bell R (2015) Unruptured cerebral aneurysms: evaluation and management. Sci World J 2015:954954–954910. https://doi.org/10.1155/2015/954954

    Article  Google Scholar 

  5. Bor AS, Rinkel GJ, van Norden J, Wermer MJ (2014) Long-term, serial screening for intracranial aneurysms in individuals with a family history of aneurysmal subarachnoid haemorrhage: a cohort study. Lancet Neurol 13:385–392. https://doi.org/10.1016/S1474-4422(14)70021-3

    Article  PubMed  Google Scholar 

  6. Vlak MH, Rinkel GJ, Greebe P, Greving JP, Algra A (2013) Lifetime risks for aneurysmal subarachnoid haemorrhage: multivariable risk stratification. J Neurol Neurosurg Psychiatry 84:619–623. https://doi.org/10.1136/jnnp-2012-303783

    Article  PubMed  Google Scholar 

  7. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389(10069):655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

    Article  PubMed  Google Scholar 

  8. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Peng R, Wang J, Qin Z, Xue L (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10:59. https://doi.org/10.1186/s13148-018-0492-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou WZ, Chen XL, Wu W, Hang CH (2017) MicroRNA-370-3p inhibits human vascular smooth muscle cell proliferation via targeting KDR/AKT signaling pathway in cerebral aneurysm. Eur Rev Med Pharmacol Sci 21(5):1080–1087

    PubMed  Google Scholar 

  11. Jiang Y, Zhang M, He H, Chen J, Zeng H, Li J, Duan R (2013) MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Med Genet 6:36. https://doi.org/10.1186/1755-8794-6-36

    Article  CAS  Google Scholar 

  12. Guo D, Wang YW, Yan L, Ma J, Han XW, Shui SF (2018) Dysregulation of microRNA-23b-3p contributes to the development of intracranial aneurysms by targeting phosphatase and tensin homolog. Int J Mol Med 42(3):1637–1643. https://doi.org/10.3892/ijmm.2018.3706

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Zhang H, Su JY (2018) MicroRNA-29a contributes to intracranial aneurysm by regulating the mitochondrial apoptotic pathway. Mol Med Rep 18(3):2945–2954. https://doi.org/10.3892/mmr.2018.9257

    Article  CAS  PubMed  Google Scholar 

  14. Zhang JZ, Chen D, Lv LQ, Xu Z, Li YM, Wang JY, Han KW, Yu MK, Huang CG, Hou LJ (2018) miR-448-3p controls intracranial aneurysm by regulating KLF5 expression. Biochem Biophys Res Commun 505(4):1211–1215. https://doi.org/10.1016/j.bbrc.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  15. Yu G, Liu P, Shi Y, Li S, Liu Y, Fan Z, et al (2019) Stimulation of endothelial progenitor cells by microRNA-31a-5p to induce endothelialization in an aneurysm neck after coil embolization by modulating the Axin1-mediated β-catenin/vascular endothelial growth factor pathway. J Neurosurg 1-9. https://doi.org/10.3171/2019.5.JNS182901

  16. Xu J, Yan S, Tan H, Ma L, Feng H, Han H, Pan M, Yu L, Fang C (2018) The miR-143/145 cluster reverses the regulation effect of KLF5 in smooth muscle cells with proliferation and contractility in intracranial aneurysm. Gene 679:266–273. https://doi.org/10.1016/j.gene.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  17. Wei L, Wang Q, Zhang Y, Yang C, Guan H, Chen Y, Sun Z (2018) Identification of key genes, transcription factors and microRNAs involved in intracranial aneurysm. Mol Med Rep 17(1):891–897. https://doi.org/10.3892/mmr.2017.7940

    Article  CAS  PubMed  Google Scholar 

  18. Luo J, Jin H, Jiang Y, Ge H, Wang J, Li Y (2016) Aberrant expression of microRNA-9 contributes to development of intracranial aneurysm by suppressing proliferation and reducing contractility of smooth muscle cells. Med Sci Monit 22:4247–4253. https://doi.org/10.12659/MSM.897511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bekelis K, Kerley-Hamilton JS, Teegarden A, Tomlinson CR, Kuintzle R, Simmons N, Singer RJ, Roberts DW, Kellis M, Hendrix DA (2016) MicroRNA and gene expression changes in unruptured human cerebral aneurysms. J Neurosurg 125(6):1390–1399. https://doi.org/10.3171/2015.11.JNS151841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Peng J, Pang J, Wan W, Chen L (2019) A functional polymorphism in the promoter region of miR-155 predicts the risk of intracranial hemorrhage caused by rupture intracranial aneurysm. J Cell Biochem 120(11):18618–18628. https://doi.org/10.1002/jcb.28785

    Article  CAS  PubMed  Google Scholar 

  21. Kim SH, Weiß C, Hoffmann U, Borggrefe M, Akin I, Behnes M (2017) Advantages and limitations of current biomarker research: from experimental research to clinical application. Curr Pharm Biotechnol 18(6):445–455. https://doi.org/10.2174/1389201018666170601091205

    Article  CAS  PubMed  Google Scholar 

  22. Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP (2018) The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 18(2):133–145. https://doi.org/10.1080/14737159.2018.1425143

    Article  CAS  PubMed  Google Scholar 

  23. Backes C, Meese E, Keller A (2016) Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther 20(6):509–518. https://doi.org/10.1007/s40291-016-0221-4

    Article  CAS  PubMed  Google Scholar 

  24. Aoki T, Nozaki K (2016) Preemptive medicine for cerebral aneurysms. Neurol Med Chir (Tokyo) 56(9):552–568. https://doi.org/10.2176/nmc.st.2016-0063

    Article  Google Scholar 

  25. Sheng B, Lai NS, Yao Y, Dong J, Li ZB, Zhao XT, et al (2018) Early serum miR-1297 is an indicator of poor neurological outcome in patients with aSAH. Biosci Rep 38(6). https://doi.org/10.1042/BSR20180646

  26. Sheng B, Fang X, Liu C, Wu D, Xia D, Xu S, Lai N (2018) Persistent high levels of miR-502-5p are associated with poor neurologic outcome in patients with aneurysmal subarachnoid hemorrhage. World Neurosurg 116:e92–e99. https://doi.org/10.1016/j.wneu.2018.04.088

    Article  PubMed  Google Scholar 

  27. Lai NS, Zhang JQ, Qin FY, Sheng B, Fang XG, Li ZB (2017) Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage. Biosci Rep 37(1). https://doi.org/10.1042/BSR20160480

  28. Feng X, Peng F, Zhang B, Wang L, Guo E, Li Y, Jiang C, Wu Z, Liu A (2018) Lower miR-143/145 and higher matrix metalloproteinase-9 levels in circulation may be associated with intracranial aneurysm formation and rupture: a pilot study. Clin Neurol Neurosurg 173:124–129. https://doi.org/10.1016/j.clineuro.2018.08.010

    Article  PubMed  Google Scholar 

  29. Wang WH, Wang YH, Zheng LL, Li XW, Hao F, Guo D (2016) MicroRNA-29a: a potential biomarker in the development of intracranial aneurysm. J Neurol Sci 364:84–89. https://doi.org/10.1016/j.jns.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Meeuwsen JAL, van Hof FNGT, van Rheenen W, Rinkel GJE, Veldink JH, Ruigrok YM (2017) Circulating microRNAs in patients with intracranial aneurysms. PLoS One 12(5):e0176558. https://doi.org/10.1371/journal.pone.0176558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li P, Zhang Q, Wu X, Yang X, Zhang Y, Li Y, Jiang F (2014) Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J Am Heart Assoc 3(5):e000972. https://doi.org/10.1161/JAHA.114.000972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Supriya M, Christopher R, Indira Devi B, Bhat DI, Shukla D (2020) Circulating MicroRNAs as potential molecular biomarkers for intracranial. Mol Diagn Ther 24(3):351–364. https://doi.org/10.1007/s40291-020-00465-8

    Article  CAS  PubMed  Google Scholar 

  33. Morga R, Borczyk M, Korostynski M, Piechota M, Hoinkis D, Golda S, Dziedzic T, Slowik A, Moskala M, Pera J (2020) Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 98(6):887–896. https://doi.org/10.1007/s00109-020-01922-x

    Article  CAS  Google Scholar 

  34. Korostynski M, Morga R, Piechota M, Hoinkis D, Golda S, Dziedzic T, Slowik A, Moskala M, Pera J (2020) Inflammatory responses induced by the rupture of intracranial aneurysms are modulated by miRNAs. Mol Neurobiol 57(2):988–996. https://doi.org/10.1007/s12035-019-01789-1

    Article  CAS  PubMed  Google Scholar 

  35. Yang F, Xing WW, Shen DW, Tong MF, Xie FM (2020) Effect of miR-126 on intracranial aneurysms and its predictive value for rupture of aneurysms. Eur Rev Med Pharmacol Sci 24(6):3245–3253. https://doi.org/10.26355/eurrev_202003_20691

    Article  CAS  PubMed  Google Scholar 

  36. Powers CJ, Dickerson R, Zhang SW, Rink C, Roy S, Sen CK (2016) Human cerebrospinal fluid microRNA: temporal changes following subarachnoid hemorrhage. Physiol Genomics 48(5):361–366. https://doi.org/10.1152/physiolgenomics.00052.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciurea AV, Palade C, Voinescu D, Nica DA (2013) Subarachnoid hemorrhage and cerebral vasospasm - literature review. J Med Life 6:120–125

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Su XW, Chan AH, Lu G, Lin M, Sze J, Zhou JY et al (2015) Circulating microRNA 132-3p and 324-3p profiles in patients after acute aneurysmal subarachnoid hemorrhage. PLoS One 10(12):e0144724. https://doi.org/10.1371/journal.pone.0144724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kikkawa Y, Ogura T, Nakajima H, Ikeda T, Takeda R, Neki H et al (2017) Altered expression of MicroRNA-15a and Kruppel-like factor 4 in cerebrospinal fluid and plasma after aneurysmal subarachnoid hemorrhage. World Neurosurg 108:909–916. e3. https://doi.org/10.1016/j.wneu.2017.09.008

    Article  PubMed  Google Scholar 

  40. Ye FH, Zhou XM, Zhang JX, Gao H, Jiang JF, Liu N (2017) Circulating microRNAs act as fingerprints in patients after acute aneurysmal subarachnoid hemorrhage. Int J Clin Exp Pathol 10(6):7154–7160

    Google Scholar 

  41. Lopes KP, Vinasco-Sandoval T, Vialle RA, Paschoal FM Jr, Bastos VAPA, Bor-Seng-Shu E, Teixeira MJ, Yamada ES, Pinto P, Vidal AF, Ribeiro-Dos-Santos A, Moreira F, Santos S, Paschoal EHA, Ribeiro-Dos-Santos  (2018) Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage. Sci Rep 8(1):8786. https://doi.org/10.1038/s41598-018-27078-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bache S, Rasmussen R, Rossing M, Laigaard FP, Nielsen FC, Møller K (2017) MicroRNA changes in cerebrospinal fluid after subarachnoid hemorrhage. Stroke 48(9):2391–2398. https://doi.org/10.1161/STROKEAHA.117.017804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, Kaye AH (2017) miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 126(4):1131–1139. https://doi.org/10.3171/2016.1.JNS151454

    Article  CAS  PubMed  Google Scholar 

  44. Liao B, Zhou MX, Zhou FK, Luo XM, Zhong SX, Zhou YF, Qin YS, Li PP, Qin C (2019) Exosome-derived MiRNAs as biomarkers of the development and progression of intracranial aneurysms. J Atheroscler Thromb 27:545–610. https://doi.org/10.5551/jat.51102

    Article  CAS  PubMed  Google Scholar 

  45. Sun L, Zhang W, Li Z, Li M, Guo J, Wang H, Wang X (2019) The expression of cerebrospinal fluid exosomal miR-630 plays an important role in the dysfunction of endothelial cells after subarachnoid hemorrhage. Sci Rep 9(1):11510. https://doi.org/10.1038/s41598-019-48049-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalani MYS, Alsop E, Meechoovet B, Beecroft T, Agrawal K, Whitsett TG, Huentelman MJ, Spetzler RF, Nakaji P, Kim S, Van Keuren-Jensen K (2020) Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J Extracell Vesicles 9(1):1713540. https://doi.org/10.1080/20013078.2020.1713540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai N, Wu D, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z, Chen G (2020) Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation 17(1):74. https://doi.org/10.1186/s12974-020-01745-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li M, Zhang J (2015) Circulating MicroRNAs: potential and emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases. Biomed Res Int 2015:730535–730539. https://doi.org/10.1155/2015/730535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vacante F, Denby L, Sluimer JC, Baker AH (2019) The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vasc Pharmacol 112:24–30. https://doi.org/10.1016/j.vph.2018.11.006

    Article  CAS  Google Scholar 

  50. Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/−145 in cardiovascular diseases. Biomed Res Int 2015:531740–531749. https://doi.org/10.1155/2015/531740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Welten SM, Goossens EA, Quax PH, Nossent AY (2016) The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res 110(1):6–22. https://doi.org/10.1093/cvr/cvw039

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Z, Schober A, Nazari-Jahantigh M (2018) Dicer promotes endothelial recovery and limits lesion formation after vascular injury through miR-126-5p. Int J Cardiol 273:199–202. https://doi.org/10.1016/j.ijcard.2018.09.006

    Article  PubMed  Google Scholar 

  53. Li SN, Li P, Liu WH, Shang JJ, Qiu SL, Zhou MX, Liu HX (2019) Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 120:109538. https://doi.org/10.1016/j.biopha.2019.109538

    Article  CAS  PubMed  Google Scholar 

  54. Huang W, Huang M, Ouyang H, Peng J, Liang J (2018) Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation. Eur J Pharmacol 826:133–139. https://doi.org/10.1016/j.ejphar.2018.02.044

    Article  CAS  PubMed  Google Scholar 

  55. Crobeddu E, Pilloni G, Tardivo V, Fontanella MM, Panciani PP, Spena G, Fornaro R, Altieri R, Agnoletti A, Ajello M, Zenga F, Ducati A, Garbossa D (2016) Role of nitric oxide and mechanisms involved in cerebral injury after subarachnoid hemorrhage: is nitric oxide a possible answer to cerebral vasospasm? J Neurosurg Sci 60(3):385–391

    PubMed  Google Scholar 

  56. Li HT, Wang J, Li SF, Cheng L, Tang WZ, Feng YG (2018) Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep 18(1):1181–1187. https://doi.org/10.3892/mmr.2018.9050

    Article  CAS  PubMed  Google Scholar 

  57. Pulcrano-Nicolas AS, Proust C, Clarençon F, Jacquens A, Perret C, Roux M, Shotar E, Thibord F, Puybasset L, Garnier S, Degos V, Trégouët DA (2018) Whole-blood miRNA sequencing profiling for vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke 49(9):2220–2223. https://doi.org/10.1161/STROKEAHA.118.021101

    Article  CAS  PubMed  Google Scholar 

  58. An JY, Zhou LL, Sun P, Pang HG, Li DD, Li Y, Zhang M, Song JN (2015) Role of the AMPK signaling pathway in early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir 157(5):781–792. https://doi.org/10.1007/s00701-015-2370-3

    Article  PubMed  Google Scholar 

  59. Rahmati S, Shojaei F, Shojaeian A, Rezakhani L, Dehkordi MB (2019) An overview of current knowledge in biological functions and potential theragnostic applications of exosomes. Chem Phys Lipids 104836. https://doi.org/10.1016/j.chemphyslip.2019.104836

  60. Feng Z, Zhang X, Li L, Wang C, Feng M, Zhao K, et al (2019) Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin Sci (Lond). https://doi.org/10.1042/CS20190680

  61. Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, Jin LS, Zhan H, Zhang H, Li JS, Wen JK (2017) Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 25:1279–1294. https://doi.org/10.1016/j.ymthe.2017.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30. https://doi.org/10.1016/j.vph.2015.02.008

    Article  CAS  Google Scholar 

  63. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  64. Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, Crosby-Nwaobi R, Prokopi M, Drozdov I, Langley SR, Sivaprasad S, Markus HS, Mitchell JA, Warner TD, Kiechl S, Mayr M (2013) Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112(4):595–600. https://doi.org/10.1161/CIRCRESAHA.111.300539

    Article  CAS  PubMed  Google Scholar 

  65. Mattox AK, Yan H, Bettegowda C (2019) The potential of cerebrospinal fluid-based liquid biopsy approaches in CNS tumors. Neuro-Oncology 21(12):1509–1518. https://doi.org/10.1093/neuonc/noz156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donati S, Ciuffi S, Brandi ML (2019) Human circulating miRNAs real-time qRT-PCR-based analysis: an overview of endogenous reference genes used for data normalization. Int J Mol Sci 20(18):4353. https://doi.org/10.3390/ijms20184353

    Article  CAS  PubMed Central  Google Scholar 

  67. Schlosser K, McIntyre LA, White RJ, Stewart DJ (2015) Customized internal reference controls for improved assessment of circulating MicroRNAs in disease. PLoS One 10(5):e0127443. https://doi.org/10.1371/journal.pone.0127443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J, Xie H, Xu Y, Zeng X (2014) U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun 454(1):210–214. https://doi.org/10.1016/j.bbrc.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  69. Bottani M, Banfi G, Lombardi G (2019) Circulating miRNAs as diagnostic and prognostic biomarkers in common solid tumors: focus on lung, breast, prostate cancers, and osteosarcoma. J Clin Med 8(10):1661. https://doi.org/10.3390/jcm8101661

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Grant of the Republic of Bashkortostan to young scientists of February 7, 2020, No. CD-43; National Natural Science Foundations of China (81971135); Natural Science Foundations of Heilongjiang Province (YQ2020H014); China Postdoctoral Science Foundation (2019T120284, 2018M631964); Postdoctoral Science Foundation of Heilongjiang Province (LBH-TZ19).

Author information

Authors and Affiliations

Authors

Contributions

IG: Conceptualization, writing of original draft, review, and editing; OB: investigation and validation; AI, HS, JS, BZ, BL, GY: Data collection; and SZ: supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guang Yang or Shiguang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gareev, I., Beylerli, O., Yang, G. et al. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg Rev 44, 2025–2039 (2021). https://doi.org/10.1007/s10143-020-01427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01427-8

Keywords

Navigation