Skip to main content

Advertisement

Log in

Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition associated with the development of early brain injury (EBI) and delayed cerebral ischemia (DCI). Pharmacological treatment of vasospasm following aSAH currently mainly comprises nimodipine administration. In the past few years, many drugs that can potentially benefit cases of subarachnoid hemorrhage have become available. The objective of this review is to critically assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) following aSAH. A systematic literature review was conducted following PRISMA guidelines. The search was aimed at studies addressing aSAH and NSAIDs during the 2010 to 2019 period, and it yielded 13 articles. Following the application of search criteria, they were divided into two groups, one containing 6 clinical articles and the other containing 7 experimental articles on animal models of aSAH. Inflammatory cerebral changes after aneurysm rupture contribute to the development of EBI, DCI and cerebral vasospasm. It appears that NSAIDs (especially coxibs) are even more effective in reducing vasospasm than nimodipine. Other beneficial effects of NSAIDs include reduction in mortality, improved functional outcome and increased hypoaggregability. However, despite these positive effects, there is only one randomized, double-blind, placebo-controlled trial showing a tendency towards a better outcome with lower incidence of vasospasm or mortality in patients following aSAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2

Similar content being viewed by others

References

  1. Ansar S, Larsen C, Maddahi A, Edvinsson L (2010) Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res 1316:163–172. https://doi.org/10.1016/j.brainres.2009.12.031

    Article  CAS  PubMed  Google Scholar 

  2. Brueggemann LI, Mani BK, Mackie AR, Cribbs LL, Byron KL (2010) Novel actions of nonsteroidal anti-inflammatory drugs on vascular ion channels: accounting for cardiovascular side effects and identifying new therapeutic applications. Mol Cell Pharmacol 2:15–19

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brune K, Patrignani P (2015) New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 8:105–118. https://doi.org/10.2147/JPR.S75160

    Article  PubMed  PubMed Central  Google Scholar 

  4. Çelik Ö, Bilginer B, Korkmaz A, Gürgör PN, Bavbek M, Özgen T, Ziyal İ (2011) Effects of intramuscular parecoxib administration on vasospasm in an experimental subarachnoid hemorrhage model. Int J Neurosci 121:316–322. https://doi.org/10.3109/00207454.2011.556284

    Article  CAS  PubMed  Google Scholar 

  5. Chang C-Z, Wu S-C, Lin C-L, Kwan A-L (2015) Parecoxib, a selective cyclooxygenase inhibitor, attenuates C-Jun N-terminal kinase activation in experimental subarachnoid hemorrhage induced early brain injury. J Neurol Neurophysiol 6. https://doi.org/10.4172/2155-9562.1000294

  6. Choi HA, Ko S-B, Chen H, Gilmore E, Carpenter AM, Lee D, Claassen J, Mayer SA, Schmidt JM, Lee K, Connelly ES, Paik M, Badjatia N (2012) Acute effects of nimodipine on cerebral vasculature and brain metabolism in high grade subarachnoid hemorrhage patients. Neurocrit Care 16:363–367. https://doi.org/10.1007/s12028-012-9670-8

    Article  CAS  PubMed  Google Scholar 

  7. Etminan N, Chang H-S, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, Algra A (2019) Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol 76:588–597. https://doi.org/10.1001/jamaneurol.2019.0006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fisher CL, Demel SL (2019) Nonsteroidal anti-inflammatory drugs: a potential pharmacological treatment for intracranial aneurysm. Cerebrovasc Dis Extra 9:31–45. https://doi.org/10.1159/000499077

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frontera JA, Provencio JJ, Sehba FA, McIntyre TM, Nowacki AS, Gordon E, Weimer JM, Aledort L (2017) The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage. Neurocrit Care 26:48–57. https://doi.org/10.1007/s12028-016-0292-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghodsi SM, Mohebbi N, Naderi S, Anbarloie M, Aoude A, Habibi Pasdar SS (2015) Comparative efficacy of meloxicam and placebo in vasospasm of patients with subarachnoid hemorrhage. Iran J Pharm Res IJPR 14:125–130

    CAS  PubMed  Google Scholar 

  11. Hinz B, Cheremina O, Brune K (2007) Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. https://doi.org/10.1096/fj.07-8506com

  12. Jack H, Zhang JH (2013) Does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? No. Stroke 44:S34–S36. https://doi.org/10.1161/STROKEAHA.111.000686

    Article  Google Scholar 

  13. Huang H, Al-Shabrawey M, Wang M-H (2016) Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat 122:45–53. https://doi.org/10.1016/j.prostaglandins.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  14. Imai T, Iwata S, Hirayama T, Nagasawa H, Nakamura S, Shimazawa M, Hara H (2019) Intracellular Fe 2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-019-42370-z

    Article  CAS  Google Scholar 

  15. Schiefecker AJ, Rass V, Gaasch M, Kofler M, Thomé C, Humpel C, Ianosi B, Hackl WO, Beer R, Pfausler B, Schmutzhard E, Helbok R (2019) Brain extracellular interleukin-6 levels decrease following antipyretic therapy with diclofenac in patients with spontaneous subarachnoid hemorrhage. Ther Hypothermia Temp Manag 9(1):48–55. https://doi.org/10.1089/ther.2018.0001

    Article  PubMed  Google Scholar 

  16. Jasiecka A, Maślanka T, Jaroszewski JJ (2014) Pharmacological characteristics of metamizole. Pol J Vet Sci 17:207–214

    Article  CAS  PubMed  Google Scholar 

  17. Jedrzejowska-Szypulka H, Larysz-Brysz M, Kukla M, Snietura M, Lewin-Kowalik J (2009) Neutralization of interleukin-1β reduces vasospasm and alters cerebral blood vessel density following experimental subarachnoid hemorrhage in rats. https://www.ingentaconnect.com/content/ben/cnr/2009/00000006/00000002/art00003.

  18. Ji X, Nishihashi T, Trandafir CC, Wang A, Shimizu Y, Kurahashi K (2007) Pharmacological nature of nicotine-induced contraction in the rat basilar artery: involvement of arachidonic acid metabolites. Eur J Pharmacol 577:109–114. https://doi.org/10.1016/j.ejphar.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  19. Ji X, Wang A, Trandafir CC, Kurahashi K (2013) Influence of experimental subarachnoid hemorrhage on nicotine-induced contraction of the rat basilar artery in relation to arachidonic acid metabolites signaling pathway. J Stroke Cerebrovasc Dis 22:951–958. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.12.001

    Article  PubMed  Google Scholar 

  20. Kim GH, Kellner CP, Hahn DK, Desantis BM, Musabbir M, Starke RM, Rynkowski M, Komotar RJ, Otten ML, Sciacca R, Schmidt JM, Mayer SA, Connolly ES (2008) Monocyte chemoattractant protein–1 predicts outcome and vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 109:38–43. https://doi.org/10.3171/JNS/2008/109/7/0038

    Article  CAS  PubMed  Google Scholar 

  21. Laher I, Zhang JH (2001) Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 21:887–906. https://doi.org/10.1097/00004647-200108000-00001

    Article  CAS  Google Scholar 

  22. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35. https://doi.org/10.1038/jcbfm.2010.191

    Article  PubMed  Google Scholar 

  23. Leese PT, Hubbard RC, Karim A, Isakson PC, Yu SS, Geis GS (2000) Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: a randomized, controlled trial. J Clin Pharmacol 40:124–132. https://doi.org/10.1177/00912700022008766

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Luo D, Chen X, Li J, Yan L, Li T, Zhao Y, Liu H, Ji X, Ma X (2017) Involvement of arachidonic acid metabolites pathway and nicotinic acetylcholine receptors (nAChRs) on nicotine-induced contractions (or relaxations) in the basilar artery. Int J Pharmacol 13:1–10. https://doi.org/10.3923/ijp.2017.1.10

    Article  CAS  Google Scholar 

  25. Young AM, Karri SK, Ogilvy CS (2012) Non-steroidal anti-inflammatory drugs used as a treatment modality in subarachnoid hemorrhage. https://www.ingentaconnect.com/content/ben/cds/2012/00000007/00000003/art00003.

  26. Mani BK, Brueggemann LI, Cribbs LL, Byron KL (2011) Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br J Pharmacol 164:237–249. https://doi.org/10.1111/j.1476-5381.2011.01273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mani BK, O’Dowd J, Kumar L, Brueggemann LI, Ross M, Byron KL (2013) Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm. J Cardiovasc Pharmacol 61:51–62. https://doi.org/10.1097/FJC.0b013e3182771708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mee E, Dorrance D, Lowe D, Neil-Dwyer G (1988) Controlled study of nimodipine in aneurysm patients treated early after subarachnoid hemorrhage. Neurosurgery 22:484–491. https://doi.org/10.1227/00006123-198803000-00006

    Article  CAS  PubMed  Google Scholar 

  29. Miller BA, Turan N, Chau M, Pradilla G (2014) Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res Int 2014:1–16. https://doi.org/10.1155/2014/384342

    Article  CAS  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  31. Munakata A, Naraoka M, Katagai T, Shimamura N, Ohkuma H (2016) Role of cyclooxygenase-2 in relation to nitric oxide and endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. Transl Stroke Res 7:220–227. https://doi.org/10.1007/s12975-016-0466-6

    Article  CAS  PubMed  Google Scholar 

  32. Muroi C, Hugelshofer M, Seule M, Keller E (2014) The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage. Neurocrit Care 20:240–246. https://doi.org/10.1007/s12028-013-9930-2

    Article  CAS  PubMed  Google Scholar 

  33. Nassiri F, Ibrahim GM, Badhiwala JH, Witiw CD, Mansouri A, Alotaibi NM, Macdonald RL (2016) A propensity score-matched study of the use of non-steroidal anti-inflammatory agents following aneurysmal subarachnoid hemorrhage. Neurocrit Care 25:351–358. https://doi.org/10.1007/s12028-016-0266-6

    Article  CAS  PubMed  Google Scholar 

  34. de Oliveira Manoel AL, Macdonald RL (2018) Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00292

  35. Olsen MH, Orre M, Leisner ACW, Rasmussen R, Bache S, Welling K-L, Eskesen V, Møller K Delayed cerebral ischaemia in patients with aneurysmal subarachnoid haemorrhage: functional outcome and long-term mortality. Acta Anaesthesiol Scand 63(9):1191–1199. https://doi.org/10.1111/aas.13412

  36. Parkhutik V, Lago A, Tembl JI, Rubio C, Fuset MP, Vallés J, Santos MT, Moscardo A (2012) Influence of COX-inhibiting analgesics on the platelet function of patients with subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 21:755–759. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.04.002

    Article  PubMed  Google Scholar 

  37. Peeyush Kumar T, McBride DW, Dash PK, Matsumura K, Rubi A, Blackburn SL (2019) Endothelial cell dysfunction and injury in subarachnoid hemorrhage. Mol Neurobiol 56:1992–2006. https://doi.org/10.1007/s12035-018-1213-7

    Article  CAS  PubMed  Google Scholar 

  38. Petruk KC, West M, Mohr G, Weir BKA, Benoit BG, Gentili F, Disney LB, Khan MI, Grace M, Holness RO, Karwon MS, Ford RM, Cameron GS, Tucker WS, Purves GB, Miller JDR, Hunter KM, Richard MT, Durity FA, Chan R, Clein LJ, Maroun FB, Godon A (1988) Nimodipine treatment in poor-grade aneurysm patients: results of a multicenter double-blind placebo-controlled trial. J Neurosurg 68:505–517. https://doi.org/10.3171/jns.1988.68.4.0505

    Article  CAS  PubMed  Google Scholar 

  39. Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, Humphrey PR, Lang DA, Nelson R, Richards P (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298:636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pluta RM (2008) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl 104:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pluta RM, Afshar JK, Boock RJ, Oldfield EH (1998) Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J Neurosurg 88:557–561. https://doi.org/10.3171/jns.1998.88.3.0557

    Article  CAS  PubMed  Google Scholar 

  42. Porchet F, Chioléro R, de Tribolet N (1995) Hypotensive effect of nimodipine during treatment for aneurysmal subarachnoid haemorrhage. Acta Neurochir 137:62–69. https://doi.org/10.1007/BF02188783

    Article  CAS  PubMed  Google Scholar 

  43. Prunell GF, Mathiesen T, Diemer NH, Svendgaard N-A (2003) Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 52:165–175; discussion 175-176. https://doi.org/10.1097/00006123-200301000-00022

    Article  PubMed  Google Scholar 

  44. Rogosch T, Sinning C, Podlewski A, Watzer B, Schlosburg J, Lichtman AH, Cascio MG, Bisogno T, Di Marzo V, Nüsing R, Imming P (2012) Novel bioactive metabolites of dipyrone (metamizol). Bioorg Med Chem 20:101–107. https://doi.org/10.1016/j.bmc.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  45. Sabri M, Lass E, Macdonald RL (2013) Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res. Treat, In https://www.hindawi.com/journals/srt/2013/394036/.

    Google Scholar 

  46. Schiefecker AJ, Pfausler B, Beer R, Sohm F, Sabo J, Knauseder V, Fischer M, Dietmann A, Hackl WO, Thomé C, Schmutzhard E, Helbok R (2013) Parenteral diclofenac infusion significantly decreases brain-tissue oxygen tension in patients with poor-grade aneurysmal subarachnoid hemorrhage. Crit Care 17:R88. https://doi.org/10.1186/cc12714

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schiefecker AJ, Rass V, Gaasch M, Kofler M, Thomé C, Humpel C, Ianosi B, Hackl WO, Beer R, Pfausler B, Schmutzhard E, Helbok R (2018) Brain extracellular interleukin-6 levels decrease following antipyretic therapy with diclofenac in patients with spontaneous subarachnoid hemorrhage. Ther Hypothermia Temp Manag 9:48–55. https://doi.org/10.1089/ther.2018.0001

    Article  PubMed  Google Scholar 

  48. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28:381–398

    Article  CAS  PubMed  Google Scholar 

  49. Silav G, Ergün H, Dolgun H, Sancak T, Sargon MF, Egemen N (2017) Dipyrone attenuates cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Neurosurg Sci 61:380–387. https://doi.org/10.23736/S0390-5616.16.03068-X

    Article  PubMed  Google Scholar 

  50. Stanley C, O’Sullivan SE (2014) Vascular targets for cannabinoids: animal and human studies. Br J Pharmacol 171:1361–1378. https://doi.org/10.1111/bph.12560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G (2013) European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 35:93–112. https://doi.org/10.1159/000346087

    Article  PubMed  Google Scholar 

  52. Thampatty BP, Sherwood PR, Gallek MJ, Crago EA, Ren D, Hricik AJ, Kuo C-WJ, Klamerus MM, Alexander SA, Bender CM, Hoffman LA, Horowitz MB, Kassam AB, Poloyac SM (2011) Role of endothelin-1 in human aneurysmal subarachnoid hemorrhage: associations with vasospasm and delayed cerebral ischemia. Neurocrit Care 15:19–27. https://doi.org/10.1007/s12028-011-9508-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tran Dinh Y, Jomaa A, Callebert J, Reynier-Rebuffel AM, Tedgui A, Savarit A, Sercombe R (2001) Overexpression of cyclooxygenase-2 in rabbit basilar artery endothelial cells after subarachnoid hemorrhage. Neurosurgery 48:626–633; discussion 633. https://doi.org/10.1097/00006123-200103000-00037

    Article  CAS  PubMed  Google Scholar 

  54. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou M-L, Gidday JM, Han BH, Zipfel GJ (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42:776–782. https://doi.org/10.1161/STROKEAHA.110.607200

    Article  CAS  PubMed  Google Scholar 

  55. Vergouwen Mervyn DI, Don I, Loch MR (2011) Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 42:924–929. https://doi.org/10.1161/STROKEAHA.110.597914

    Article  CAS  PubMed  Google Scholar 

  56. Weir BK, Kongable GL, Kassell NF, Schultz JR, Truskowski LL, Sigrest A (1998) Cigarette smoking as a cause of aneurysmal subarachnoid hemorrhage and risk for vasospasm: a report of the Cooperative Aneurysm Study. J Neurosurg 89:405–411. https://doi.org/10.3171/jns.1998.89.3.0405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radim Jancalek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval not applicable as this is a retrospective review.

Informed consent

This is a retrospective review so for this type of study formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solar, P., Mackerle, Z., Joukal, M. et al. Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review. Neurosurg Rev 44, 649–658 (2021). https://doi.org/10.1007/s10143-020-01276-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01276-5

Keywords

Navigation