Skip to main content

Advertisement

Log in

Measurement of optic nerve blood flow during dissection of parasellar tumors

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The authors describe direct measurement of optic nerve blood flow (ONBF) and examine the application of such monitoring to detecting optic nerve ischemia during parasellar tumor surgery. Prospective evaluation was performed for 26 patients requiring surgery for parasellar tumors. Ophthalmologic examination was performed pre- and postoperatively. ONBF was measured using laser Doppler flowmetry before tumor dissection (initial ONBF) and after tumor removal (final ONBF). The waveform was analyzed using a data acquisition system. Initial ONBF could be measured in 16 patients (22 nerves; 8.9 ± 0.9 ml/100 g/min). Final ONBF could be determined in all 26 patients (42 nerves; 10.8 ± 0.7 ml/100 g/min). In the 22 nerves with initial measurements, final ONBF (11.3 ± 0.6 ml/100 g/min) was significantly increased (p < 0.01). In six patients whose optic canal was unroofed, ONBF did not change immediately; nonetheless, an increase was prominent in the final phase (p < 0.05). In another six patients, a small vessel adjacent to the optic nerve was temporarily occluded. ONBF was demonstrably reduced in three patients and recovered quickly after reperfusion. Intraoperative ONBF measurement may be useful as real-time monitoring for prediction and prevention of intraoperative optic nerve ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akabane A, Saito K, Suzuki Y, Shibuya M, Sugita K (1995) Monitoring visual evoked potentials during retraction of the canine optic nerve: protective effect of unroofing the optic canal. J Neurosurg 82:284–287

    PubMed  CAS  Google Scholar 

  2. Al-Mefty O, Holoubi A, Rifai A, Fox JL (1985) Microsurgical removal of suprasellar meningiomas. Neurosurgery 16:364–372

    Article  PubMed  CAS  Google Scholar 

  3. Al-Mefty O (1987) Supraorbital-pterional approach to skull base lesions. Neurosurgery 21:474–477

    Article  PubMed  CAS  Google Scholar 

  4. Al-Mefty O (1990) Clinoidal meningiomas. J Neurosurg 73:840–849

    PubMed  CAS  Google Scholar 

  5. Andrews BT, Wilson CB (1988) Suprasellar meningiomas: the effect of tumor location on postoperative visual outcome. J Neurosurg 69:523–528

    PubMed  CAS  Google Scholar 

  6. Bergland R, Ray BS (1969) The arterial supply of the human optic chiasm. J Neurosurg 31:327–334

    PubMed  CAS  Google Scholar 

  7. Cedzich C, Schramm J, Fahlbusch R (1987) Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery 21:709–715

    Article  PubMed  CAS  Google Scholar 

  8. Deutsche Ophthalmologische Geselschaft (1982) Empfehlungen zur Beuteilung der Minderung der Erwerbsfähigkeit durch Schäden des Sehvermögens [in German]. Klin Mbl Augenheilk 180:242–245

    Article  Google Scholar 

  9. Dolenc VV (1997) Transcranial epidural approach to pituitary tumors extending beyond the sella. Neurosurgery 41:542–552

    Article  PubMed  CAS  Google Scholar 

  10. Dunker RO, Harris AB (1976) Surgical anatomy of the proximal anterior cerebral artery. J Neurosurg 44:359–367

    PubMed  CAS  Google Scholar 

  11. Effenterre RV, Boch AL (2002) Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg 97:3–11

    PubMed  Google Scholar 

  12. Fahlbusch R, Schott W (2002) Pterional surgery of meningiomas of the tuberculum sellae and planum sphenoidale: surgical results with special consideration of ophthalmological and endocrinological outcomes. J Neurosurg 96:235–243

    PubMed  Google Scholar 

  13. Gibo H, Lenkey C, Rhoton AL Jr (1981) Microsurgical anatomy of the supraclinoid portion of the internal carotid artery. J Neurosurg 55:560–574

    PubMed  CAS  Google Scholar 

  14. Goel A, Muzumdar D, Desai K (2002) Tuberculum sellae meningioma: A report on management on the basis of a surgical experience with 70 patients. Neurosurgery 51:1358–1364

    Article  PubMed  Google Scholar 

  15. Grisoli F, Diaz-Vasquez P, Riss M, Vincentelli F, Leclercq TA, Hassoun J, Salamon G (1986) Microsurgical management of tuberculum sellae meningiomas. Results in 28 consecutive cases. Surg Neurol 26:37–44

    Article  PubMed  CAS  Google Scholar 

  16. Hida S, Naito M, Kubo M (2003) Intraoperative measurement of nerve root blood flow during discectomy for lumbar disc herniation. Spine 28:85–90

    Article  PubMed  Google Scholar 

  17. Jallo GI, Benjamin V (2002) Tuberculum sellae meningiomas: Microsurgical anatomy and surgical technique. Neurosurgery 51:1432–1440

    Article  PubMed  Google Scholar 

  18. Kikuchi Y, Sasaki T, Matsumoto M, Oikawa T, Itakura T, Kodama N (2005) Optic nerve evoked potentials elicited by electrical stimulation. –Experimental and clinical studies-. Neurol Med Chir (Tokyo) 45:349–355

    Article  Google Scholar 

  19. Kinjo T, Al-Mefty O, Ciric I (1995) Diaphragma sellae meningiomas. Neurosurgery 36:1082–1092

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi S, Suzuki Y, Asai T, Yoshizawa H (2003) Changes in nerve root motion and intraradicular blood flow during intraoperative femoral nerve stretch test. J Neurosurg (Spine 3) 99:298–305

    Google Scholar 

  21. Krayenbühl HA, Yaşargil MG (1952) Topography of the anterior cerebral artery (A1). In: Huber P (ed) Cerebral Angiography, 2nd edn. Thieme, Stuttgart, pp 81–84

    Google Scholar 

  22. Kurokawa Y, Uede T, Niwa J, Daibo M, Hashi K (1998) Visual acuity outcome and recurrence in large or huge pituitary adenomas operated with transcranial approach: comparison between frontotemporal and interhemispheric approaches [in Japanese]. No Shinkei Geka 26:813–821

    PubMed  CAS  Google Scholar 

  23. Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480:563–573

    PubMed  CAS  Google Scholar 

  24. Mathiesen T, Kihlström L (2006) Visual outcome of tuberculum sellae meningiomas after extradural optic nerve decompression. Neurosurgery 59:570–576

    Article  PubMed  Google Scholar 

  25. Miyamoto E, Tomimoto H, Nakao S, Wakita H, Akiguchi I, Miyamoto K, Shingu K (2001) Caudoputamen is damaged by hypocapnia during mechanical ventilation in a rat model of chronic cerebral hypoperfusion. Stroke 32:2920–2925

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura M, Roser F, Jacobs C, Vorkapic P, Samii M (2006) Medial sphenoid wing meningiomas: Clinical outcome and recurrence rate. Neurosurgery 58:626–639

    Article  PubMed  Google Scholar 

  27. Nakamura M, Roser F, Struck M, Vorkapic P, Samii M (2006) Tuberculum sellae meningiomas: Clinical outcome considering different surgical approaches. Neurosurgery 59:1019–1029

    PubMed  Google Scholar 

  28. Orgül S, Cioffi GA, Bacon DR, Bhandari A, Van Buskirk EM (1996) Measurement of optic nerve blood flow with nonradioactive colored microspheres in rabbits. Microvasc Res 51:175–186

    Article  PubMed  Google Scholar 

  29. Perlmutter D, Rhoton AL (1976) Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex. J Neurosurg 45:259–272

    PubMed  CAS  Google Scholar 

  30. Pu F, Mishima K, Egashira N, Iwasaki K, Kaneko T, Uchida T, Irie K, Ishibashi D, Fujii H, Kosuna K, Fujiwara M (2004) Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. J Pharmacol Sci 94:393–402

    Article  PubMed  CAS  Google Scholar 

  31. Reilly EL, Kondo C, Brunberg JA, Doty DB (1978) Visual evoked potentials during hypothermia and prolonged circulatory arrest. Electroenceph Clin Neurophysiol 45:100–106

    Article  PubMed  CAS  Google Scholar 

  32. Rhoton AL Jr (2002) The supratentorial arteries. Neurosurgery 51(Suppl 1):S53–S120

    PubMed  Google Scholar 

  33. Ringel F, Cedzich C, Schramm J (2007) Microsurgical technique and results of a series of 63 spheno-orbital meningiomas. Neurosurgery 60(Suppl 2):ONS214–ONS222

    Article  Google Scholar 

  34. Riva CE, Grunwald JE, Sinclair SH (1982) Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci 22:241–248

    PubMed  CAS  Google Scholar 

  35. Riva CE, Pournaras CJ, Poitry-Yamate CL, Petrig BL (1990) Rhythmic changes in velocity, volume, and flow of blood in the optic nerve head tissue. Microvasc Res 40:36–45

    Article  PubMed  CAS  Google Scholar 

  36. Rosenstein J, Symon L (1984) Surgical management of suprasellar meningioma. Part 2: Prognosis for visual function following craniotomy. J Neurosurg 61:642–648

    Article  PubMed  CAS  Google Scholar 

  37. Shibuya M, Takayasu M, Suzuki Y, Saito K, Sugita K (1996) Bifrontal basal interhemispheric approach to craniopharyngioma resection with or without division of the anterior communicating artery. J Neurosurg 84:951–956

    PubMed  CAS  Google Scholar 

  38. Suzukawa K (1989) Evaluation of the transcranial approach to pituitary adenomas based on quantitative analysis of pre- and postoperative visual function. Neurol Med Chir (Tokyo) 29:1012–1019

    Article  CAS  Google Scholar 

  39. Symon L, Rosenstein J (1984) Surgical management of suprasellar meningioma. Part 1: The influence of tumor size, duration of symptoms, and microsurgery on surgical outcome in 101 consecutive cases. J Neurosurg 61:633–641

    PubMed  CAS  Google Scholar 

  40. Uhl RR, Squires KC, Bruce DL, Starr A (1980) Effect of halothane anesthesia on the human cortical visual evoked response. Anesthesiology 53:273–276

    Article  PubMed  CAS  Google Scholar 

  41. Wilson WB, Kirsch WM, Neville H, Stears J, Feinsod M, Lehman RAW (1976) Monitoring of visual function during parasellar surgery. Surg Neurol 5:323–329

    PubMed  CAS  Google Scholar 

  42. Yaşargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P (1990) Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J Neurosurg 73:3–11

    Article  PubMed  Google Scholar 

  43. Yavuz E, Morawski K, Telischi FF, Özdamar Ö, Delgado RE, Manns F, Parel JM (2005) Simultaneous measurement of electrocochleography and cochlear blood flow during cochlear hypoxia in rabbits. J Neurosci Methods 147:55–64

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Saito.

Additional information

Comments

Kiyohiro Houkin, Sapporo, Japan

The risk management of the predictable adverse events in neurosurgery is highlighted in these days. Among them, postoperative visual disturbance due to the parasellar tumors are well known and serious complication for patients even if the high risk of visual deficit is informed before the surgery.

As is reported in many papers, the main cause of the postoperative visual disturbance in parasellar tumor is the physical damage to optic nerve and ischemic damage to the nerve. The ischemic damage to optic nerve is empirically well known. However, its scientific evidence has not well demonstrated. Moreover, its prediction by reliable monitoring has not been shown so far.

In this charming paper by Aimi et al. using Doppler flowmeter, it is firstly revealed that the ischemic damage to optic nerve is considered to be the cause of visual disturbance. This paper informs neurosurgeons that are committed to paresellar tumor and also paraclinoid aneurysm of novel alarm bell to the microcirculation to the optic nerve.

I am pretty confident that the ONBF monitoring may be the practical weapon to prevent the avoidable and predictable damage to the microcirculation to the optic nerve. However, the experience is quite limited in this paper. More common experience by many neurosurgeons (retest by other neurosurgeons) is indispensable to establish this attractive tool as a clinical routine. In addition, I hope that the authors accumulate more experience and show more quantitative date to be useful for other colleagues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimi, Y., Saito, K., Nagatani, T. et al. Measurement of optic nerve blood flow during dissection of parasellar tumors. Neurosurg Rev 32, 199–205 (2009). https://doi.org/10.1007/s10143-008-0176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-008-0176-y

Keywords

Navigation