Skip to main content
Log in

A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J (2024) Mechanisms of Plant Epigenetic Regulation in response to plant stress: recent discoveries and implications. Plants 13(2):163. https://doi.org/10.3390/plants13020163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari L, Baral R, Paudel D, Min D, Makaju SO, Poudel HP, Acharya JP, Missaoui AM (2022) Cold stress in plants: strategies to improve cold tolerance in forage species. Plant Stress 4:100081. https://doi.org/10.1016/j.stress.2022.100081

    Article  CAS  Google Scholar 

  • Agrawal AA (2002) Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83:3408–3415

    Article  Google Scholar 

  • Ahmad A, Dong Y, Cao X (2011) Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS ONE 6:22664

    Article  Google Scholar 

  • Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF (2020) Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int J Mol Sci 21(20):7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752

    Article  CAS  PubMed  Google Scholar 

  • Asim A, Gökçe ZNÖ, Bakhsh A, Çayli İT, Aksoy E, Çalişkan S, Çalişkan ME, Demirel U (2021) Individual and combined effect of drought and heat stresses in contrasting potatocultivars overexpressing miR172b-3p. Turkish J Agric Forestry 45(5):651–668

    Article  CAS  Google Scholar 

  • Balestrini R, Chitarra W, Ghirardo A, Nardini A, Nerva L (2022) A stressful life: how plants cope with multiple biotic and abiotic adverse factors. Plant Stress 5

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 3381–395. https://doi.org/10.1038/cr.2011.22

  • Bäurle I (2018) November. Can’t remember to forget you: chromatin-based priming of somatic stress responses. Seminars in cell & developmental biology, vol 83. Academic, pp 133–139

  • Bäurle I, Trindade I (2020) Chromatin regulation of somatic abiotic stress memory. J Exp Bot 71:5269–5279

    Article  PubMed  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatavichute YV, Zhang X, Cokus S et al (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 3:e3156

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein E, Duncan EM, Masui O et al (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26:2560–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berr A, McCallum EJ, Ménard R et al (2010) Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22:3232–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S, Roche B, Martienssen RA (2019) RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 16(9):1133–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A (2022) Effect of low-temperature stress on germination, growth, and phenology of plants: a review. Physiological Processes Plants under low Temp Stress 1–106

  • Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5(8):995–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE 5(3):9514

    Article  Google Scholar 

  • Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI (2022) Mechanical stress acclimation in plants: linking hormones and somatic memory to thigmomorphogenesis. Plant Cell Environ 45(4):989–1010

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful memories of plants: evidence and possible mechanisms. Plant Sci 173(6):603–608

    Article  CAS  Google Scholar 

  • Brzezinka K, Altmann S, Czesnick H et al (2016) Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife 5. https://doi.org/10.7554/eLife.17061

  • Buch DU, Sharma OA, Pable AA, Barvkar VT (2020) Characterization of microRNA genes from Pigeonpea (Cajanus cajan L.) and understanding their involvement in drought stress. J Biotechnol 321:23–34

    Article  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Rechavi O (2022) Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 23:185–203. https://doi.org/10.1038/s41580-021-00425-y

    Article  CAS  PubMed  Google Scholar 

  • Chow HT, Mosher RA (2023) Small RNA-mediated DNA methylation during plant reproduction. Plant Cell 35:1787–1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18:407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colaneri AC, Jones AM (2013) Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS ONE 8(4):59878

    Article  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury JM, Wincker P, Roudier F (2014) Mapping the epigenetic basis of complex traits. Science 343(6175):1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401(6749):157–161

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Sousa AR, Ribas RF, Coelho Filho MA, Freschi L, Ferreira CF, dos Soares Filho S, Pérez-Molina W, da Silva Gesteira JP A (2022) Drought tolerance memory transmission by citrus buds. Plant Sci 320:111292. https://doi.org/10.1016/j.plantsci.2022.111292

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Bellizzi MDR, Ning Y, Meyers BC, Wang GL (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24(9):3783–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divya K, Palakolanu SR, Kavi Kishor P, Rajesh AS, Vadez V, Sharma KK, Mathur PB (2021) Functional characterization of late embryogenesis abundant genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance. Physiol Plant 173(4):1616–1628

    Article  CAS  PubMed  Google Scholar 

  • Dreyer A, Dietz KJ (2018) Reactive oxygen species and the redox-regulatory network in cold stress acclimation. Antioxidants 7(11):169. https://doi.org/10.3390/antiox7110169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont S, Rivoal J (2019) Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front Plant Sci 10:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebbs ML, Bender J (2006) Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18:1166–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara KI, Abe K, Ichikawa H, Valentine L, Hohn B (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF‐1 mutants. EMBO J 25(23):5579–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhad M, Kumar U, Tomar V, Hossain A (2023) Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Front Sustainable Food Syst 7:1203721

    Article  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdous J, Hussain SS, Shi BJ (2015) Role of micro RNA s in plant drought tolerance. Plant Biotechnol J 13(3):293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folta A, Severing EI, Krauskopf J et al (2014) Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression. BMC Plant Biol 14:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich T, Faivre L, Bäurle I, Schubert D (2019) Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ 42(3):762–770

    Article  CAS  PubMed  Google Scholar 

  • Furtak K, Wolińska A (2023) The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture–A review. CATENA 231:107378

    Article  Google Scholar 

  • Gahlaut V, Zinta G, Jaiswal V, Kumar S (2020) Quantitative epigenetics: a new avenue for crop improvement. Epigenomes 4(4):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallusci P, Agius DR, Moschou PN, Dobránszki J, Kaiserli E, Martinelli F (2023) Deep inside the epigenetic memories of stressed plants. Trend Plant Sci 28(2):142–153. https://doi.org/10.1016/j.tplants.2022.09.004

    Article  CAS  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul 83:175–198

    Article  CAS  Google Scholar 

  • Giusti L, Mica E, Bertolini E, De Leonardis AM, Faccioli P, Cattivelli L, Crosatti C (2017) microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency. Funct Integr Genomics 17(2):293–309

    Article  CAS  PubMed  Google Scholar 

  • Goering R, Larsen S, Tan J, Whelan J, Makarevitch I (2021) QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population. PLoS ONE 16(7):e0254437. https://doi.org/10.1371/journal.pone.0254437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gökçe ZNÖ, Gökçe AF, Junaid MD, Chaudhry UK (2022) Morphological, physiological, and biochemical responses of onion (Allium cepa L.) breeding lines to single and combined salt and drought stresses. Euphytica 218(3):29

    Article  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8(8):864–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X, Jiang D, Wang Y et al (2009) Repression of the floral transition via histone H2B monoubiquitination. Plant J 57:522–533

    Article  CAS  PubMed  Google Scholar 

  • Guillier M, Gottesman S, Storz G (2006) Modulating the outer membrane with small RNAs. Genes Dev 20(17):2338–2348

    Article  CAS  PubMed  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinform 9(6):183–199. https://doi.org/10.1016/S1672-0229(11)60022-3

    Article  CAS  Google Scholar 

  • Haile GG, Tang Q, Li W, Liu X, Zhang X (2020) Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water 7(2):1407

    Article  Google Scholar 

  • Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A (2022) Chromatin-based transcriptional reprogramming in plants under abiotic stresses. Plants 11(11):1449. https://doi.org/10.3390/plants11111449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684. https://doi.org/10.3390/ijms14059643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani A, Azapagic A, Shokri N (2020) Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc Natl Acad Sci 117(52):33017–33027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H, Van Breusegem F, Guisez Y, Bots M, Lambert B, Laga B (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci 106(47):20109–20114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochem Biophys Acta Gene Regul Mech 1809(8):459–468

    Article  CAS  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179(3):877–887

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Schmülling T (2019) Stress priming, memory, and signalling in plants. Plant Cell Environ 42(3):753–761

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5(1):1–18

    Article  Google Scholar 

  • Hrmova M, Hussain SS (2021) Plant transcription factors involved in drought and associated stresses. Int J Mol Sci 22(11):5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang LU, He S, Huang MIN, Tan J, Zhao LIN, Yan S, Li HUI, Zhou KUN, Liang Y, Li L (2012) Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant Cell Environ 35(12):2130–2142

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou DX (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144(3):1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang LZ, Zhou M, Ding YF, Zhu C (2022) Gene networks involved in plant heat stress response and tolerance. Int J Mol Sci 23(19):11970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyas M, Nisar M, Khan N, Hazrat A, Khan AH, Hayat K, Fahad S, Khan A, Ullah A (2021) Drought tolerance strategies in plants: a mechanistic approach. J Plant Growth Regul 40:926–944

    Article  CAS  Google Scholar 

  • Iqbal MS, Singh AK, Ansari MI (2020) Effect of drought stress on crop production. New frontiers in stress management for durable agriculture p35-47

  • Iwasaki M, Paszkowski J (2014) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci U S A 111:8547–8552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139(1):69–83

    Article  CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jacob Y, Martienssen RA (2011) Chromatin reprogramming: gender equality during Arabidopsis germline differentiation. Curr Biol 21(1):R20–R22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277(5329):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Junaid MD, Öztürk ZN, Gökçe AF (2023) Exploitation of tolerance to drought stress in carrot (Daucus carota L.): an overview. Stress Biol 3(1):55. https://doi.org/10.1007/s44154-023-00130-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153(4):1859–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr J, Morris RJ, Kragler F (2022) Long-distance transported RNAs: from identity to function. Annu Rev Plant Biol 73:457–474. https://doi.org/10.1146/annurev-arplant-070121-033601

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49(10):1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Seki M (2012) An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. Plant Cell Physiol 53(5):794–800

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lim JY, Shin H, Kim BG, Yoo SD, Kim WT, Huh JH (2019) ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression. Plant Physiol 179:1810–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa M, David J (2017) Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: how stem cells talk. Plants 6:12. https://doi.org/10.3390/plants6010012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Chen X, Lv F, Ren H, Fan Z, Qin H, Yu L, Shi X, Xu Y (2019) Serum response factor (SRF) promotes ROS generation and hepatic stellate cell activation by epigenetically stimulating NCF1/2 transcription. Redox Biol 26:101302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooke R, Keurentjes JJ (2015) Epigenetic variation contributes to environmental adaptation of Arabidopsis thaliana. Plant Signal Behav 10(9):1057368

    Article  Google Scholar 

  • Kou S, Gu Q, Duan L, Liu G, Yuan P, Li H, Wu Z, Liu W, Huang P, Liu L (2022) Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation. J Plant Growth Regul 41(7):2903–2917. https://doi.org/10.1007/s00344-021-10483-3

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608. https://doi.org/10.1093/jxb/err460

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Mohapatra T (2021) Dynamics of DNA methylation and its functions in plant growth and development. Front Plant Sci 12:596236

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB (2018) Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. J Exp Bot 69(3):537–551

    Article  CAS  PubMed  Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Lämke J, Brzezinka K, Altmann S, Bäurle I (2016) A hit-and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35:162–175

    Article  PubMed  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3(3):594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Gu L, Gao L et al (2016) Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B (2019) DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol 223(2):979–992

    Article  CAS  PubMed  Google Scholar 

  • Li L, Luo H, Lim DH, Han L, Li Y, Fu XD, Qi Y (2021) Global profiling of RNA–chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. Nat Plant 7(10):1364–1378

    Article  CAS  Google Scholar 

  • Li S, Peng Y, Panchenko AR (2022) DNA methylation: precise modulation of chromatin structure and dynamics. Curr Opin Struct Biol 75:102430

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Tang S, Wang Y, Yang L, Wang J, Yin W (2014) December. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15(1):1–11

    Google Scholar 

  • Liang Y, Wei K, Wei F, Qin S, Deng C, Lin Y, Li M, Gu L, Wei G, Miao J, Zhang Z (2021) Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis. BMC Plant Biol 21(1):1–20

    Article  Google Scholar 

  • Lim CJ, Park J, Shen M et al (2020) The histone-modifying Complex PWR/HOS15/HD2C Epigenetically regulates Cold Tolerance. Plant Physiol 184:1097–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Able AJ, Able JA (2016a) SMARTER de-stressed cereal breeding. Trends Plant Sci 21(11):909–925

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu ZY (2018) Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX 5 function in abscisic acid and dehydration stress responses. New Phytol 217(4):1582–1597

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng L, Gu X et al (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Able AJ, Able JA (2020) Transgenerational effects of water-deficit and heat stress on germination and seedling vigour—new insights from durum wheat microRNAs. Plants 9(2):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Able AJ, Able JA (2021) Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Sci Rep 11(1):1–17

    Google Scholar 

  • Liu X, Quan W, Bartels D (2022) Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. Planta 255(2):1–14

    Article  Google Scholar 

  • Lu F, Cui X, Zhang S et al (2010) JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res 20:387–390

    Article  PubMed  Google Scholar 

  • Luján-Soto E, Dinkova TD (2021) Time to wake up: epigenetic and Small-RNA-Mediated regulation during seed germination. https://doi.org/10.3390/plants10020236. Plants 10

  • Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13(3):1318

    Article  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(6):S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R, Zhou M-M (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6:018762

    Article  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408

    Article  CAS  PubMed  Google Scholar 

  • McCarty M, Avery OT (1946) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: III. An improved method for the isolation of the transforming substance and its application to pneumococcus types II, III, and VI. J Exp Med 83(2):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L (2016) The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell 28(1):42–54

    Article  CAS  PubMed  Google Scholar 

  • Minhas PS, Yadav RK, Bali A (2020) Perspectives on reviving waterlogged and saline soils through plantation forestry. Agric Water Manag 232:106063

    Article  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442(7106):1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80. https://doi.org/10.4067/S0716-97602011000100010

    Article  CAS  PubMed  Google Scholar 

  • Mozgova I, Hennig L (2015) The polycomb group protein regulatory network. Annu Rev Plant Biol 66:269–296

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Jung C, Cheong J-J (2019) Chromatin remodeling for the transcription of type 2 C protein phosphatase genes in response to salt stress. Plant Physiol Biochem 141:325–331

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Vu NT, Cheong JJ (2022) Transcriptional Stress Memory and transgenerational inheritance of Drought Tolerance in plants. Int J Mol Sci 23(21):12918. https://doi.org/10.3390/ijms232112918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu C, Li H, Jiang L, Yan M, Li C, Geng D, Xie Y, Yan Y, Shen X, Chen P, Dong J (2019) Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. Hortic Res 6

  • Oberkofler V, Pratx L, Bäurle I (2021) Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr Opin Plant Biol 61:102007

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi GK, Sahoo A, Satapathy KB (2021) Insights to plant immunity: defense signaling to epigenetics. Physiol Mol Plant Pathol 113:101568

    Article  CAS  Google Scholar 

  • Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Yun DJ (2018) Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci 115(23):E5400–E5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53(5):801–808. https://doi.org/10.1093/pcp/pcs044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Scheid OM (2009) Transgenerational stress memory is not a general response in Arabidopsis. PLoS ONE 4(4):5202

    Article  Google Scholar 

  • Perrella G, Zioutopoulou A, Headland LR, Kaiserli E (2020) The impact of light and temperature on chromatin organization and plant adaptation. J Exp Bot 17:5247–5255. https://doi.org/10.1093/jxb/eraa154

    Article  CAS  Google Scholar 

  • Ramirez-Prado JS, Latrasse D, Rodriguez‐Granados NY, Huang Y, Manza‐Mianza D, Brik‐Chaouche R, Jaouannet M, Citerne S, Bendahmane A, Hirt H, Raynaud C (2019) The polycomb protein LHP 1 regulates Arabidopsis thaliana stress responses through the repression of the MYC 2‐dependent branch of immunity. Plant J 100(6):1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12(2):327–339

    Article  CAS  PubMed  Google Scholar 

  • Reyer CP, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, De Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biol 19(1):75–89

    Article  Google Scholar 

  • Rico L, Ogaya R, Barbeta A, Penuelas J (2014) Changes in DNA methylation fingerprint of Q uercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16(2):419–427

    Article  CAS  PubMed  Google Scholar 

  • Riggs AD, Porter TN (1996) Overview of epigenetic mechanisms. Cold Spring Harbor Monogr Archive 32:29–45

    CAS  Google Scholar 

  • Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed F, Chaudhry UK, Raza A, Charagh S, Bakhsh A, Bohra A, Ali S, Chitikineni A, Saeed Y, Visser RG, Siddique KH (2023) Developing future heat-resilient vegetable crops. Funct Integr Genomics 23(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14(6):1–24

    Article  Google Scholar 

  • Sato H, Takasaki H, Takahashi F, Suzuki T, Iuchi S, Mitsuda N, Ohme-Takagi M, Ikeda M, Seo M, Yamaguchi-Shinozaki K, Shinozaki K (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proceedings of the National Academy of Sciences 115(47):E11178-E11187

  • Schmidt M, Byzova M, Martens C, Peeters M, Raj Y, Shukla S, Verwulgen T, De Block M, Van Lijsebettens M (2018) Methylome and epialleles in rice epilines selected for energy use efficiency. Agronomy 8(9):163

    Article  CAS  Google Scholar 

  • Schmitz RJ, Tamada Y, Doyle MR et al (2009) Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol 149:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2):259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938. https://doi.org/10.3390/agronomy10070938

    Article  CAS  Google Scholar 

  • Shahzad S, Khan MY, Zahir ZA, Asghar HN, Chaudhry UK (2017) Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pak J Bot 49(4):1523–1530

    CAS  Google Scholar 

  • Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA, Shakoor A, Haris M (2021) Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ Sci Poll Res 28:14211–14232

    Article  Google Scholar 

  • Sharma R, Vishal P, Kaul S et al (2017) Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. Plant Cell Rep 36:203–217

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M (2022) Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. Plant Physiol Biochem 179:10–24

    Article  CAS  PubMed  Google Scholar 

  • Shekhova E, Ivanova L, Krüger T, Stroe MC, Macheleidt J, Kniemeyer O, Brakhage AA (2019) Redox proteomic analysis reveals oxidative modifications of proteins by increased levels of intracellular reactive oxygen species during hypoxia adaptation of aspergillus fumigatus. Proteomics 19(5):1800339

    Article  Google Scholar 

  • Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Sys biol 3(1):138

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MN, Léon J, Naz AA, Ballvora A (2021) Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J Exp Bot 72(4):1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Slotkin R, Keith M, Vaughn F, Borges Miloš, Tanurdžić JörgD, Becker JoséA, Feijó, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136 3:461–472. https://doi.org/10.1016/j.cell.2008.12.038

    Article  CAS  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Soja G, Eid M, Gangl H, Redl H (1997) Ozone sensitivity of grapevine (Vitis vinifera L.): evidence for a memory effect in a perennial crop plant? Phyton (Horn) 37:265–270

    CAS  Google Scholar 

  • Srivastav AL, Dhyani R, Ranjan M, Madhav S, Sillanpää M (2021) Climate-resilient strategies for sustainable management of water resources and agriculture. Environ Sci Pollut Res 28(31):41576–41595

    Article  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26(4):1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Wang S, Zhang F et al (2017) Phosphorylation of histone H2A at serine 95: a plant-specific Mark involved in Flowering Time Regulation and H2A.Z Deposition. Plant Cell 29:2197–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L (2019) Dynamic changes in genome-wide Histone3 Lysine27 trimethylation and Gene Expression of Soybean Roots in response to salt stress. Front Plant Sci 10:1031. https://doi.org/10.3389/fpls.2019.01031

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymańska* R, Ślesak I, Orzechowska A, Kruk J (2017) Physiological and biochemical responses to high light and temperature stress in plants. Environ Exp. https://doi.org/10.1016/j.envexpbot.2017.05.002. Bot139:165 – 77

    Article  Google Scholar 

  • Tahkokorpi M, Taulavuori K, Laine K, Taulavuori E (2007) After-effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ Exp Bot 61(1):85–93

    Article  CAS  Google Scholar 

  • Tian Z, Li K, Sun Y, Chen B, Pan Z, Wang Z, Pang B, He S, Miao Y, Du X (2024) Physiological and transcriptional analyses reveal formation of memory under recurring drought stresses in seedlings of cotton (Gossypium hirsutum). Plant Sci 338:111920. https://doi.org/10.1016/j.plantsci.2023.111920

    Article  CAS  PubMed  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4(6):996–1013

    Article  CAS  PubMed  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  • Verhoeven KJ, Jansen JJ, Van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185(4):1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8

    Article  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L). J Exp Bot 62(6):1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Wang J, He Q, Wang W, Xiang S, Sun H, Li X, Liang G, Guo Q (2013) Advances in small RNAs and sexual Reproduction in plants. Agric Sci Technol 14(2):211

    Google Scholar 

  • Wang JX, Gao J, Ding SL, Wang K, Jiao JQ, Wang Y, Sun T, Zhou LY, Long B, Zhang XJ, Li Q (2015) Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol Cell 59(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fan H, Wang B, Yuan F (2023) Research progress on the roles of lncRNAs in plant development and stress responses. Front Plant Sci 14:1138901

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany 87(6):650–657

    Article  CAS  Google Scholar 

  • Xu J, Zhou S, Gong X, Song Y, van Nocker S, Ma F, Guan Q (2018) Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotech J 16(2):672–687

    Article  CAS  Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustain Crop Prod 3

  • Yalcin M, Gökçe ZNÖ (2021) Investigation of the effects of overexpression of Novel_105 miRNA in contrasting potato cultivars during separate and combined drought and heat stresses. Turk J Bot 45(5):397–411

    Article  CAS  Google Scholar 

  • Yang W, Jiang D, Jiang J, He Y (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62:663–673

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Chen X, Chen Y (2019) Plant noncoding RNAs: hidden players in development and stress responses. Annu Rev Cell Dev Biol 35:407–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue H, Zhang H, Su N, Sun X, Zhao Q, Weining S, Nie X, Yue W (2022) Integrate small RNA and degradome sequencing to Reveal Drought Memory Response in Wheat (Triticum aestivum L). Int J Mol Sci 23(11):5917. https://doi.org/10.3390/ijms23115917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung WS, Wang Q, Huang M, Wong FL, Liu A, Ng MS, Li KP, Sze CC, Li MW, Lam HM (2022) Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. Plant J 109(6):1575–1590. https://doi.org/10.1111/tpj.15652

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J (2019) Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol 20(1):1–17. https://doi.org/10.1186/s13059-019-1731-2

    Article  CAS  Google Scholar 

  • Zhang Q, Tian Y (2022) Molecular insights into the transgenerational inheritance of stress memory. J Genet Genom 49(2):89–95

    Article  Google Scholar 

  • Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14(2):142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J et al (2007a) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2:e1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Clarenz O, Cokus S et al (2007b) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Germann S, Blus BJ et al (2007c) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Du X, Tang K et al (2018a) Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat Commun 9:4547

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lang Z, Zhu J-K (2018b) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Teotia S, Tang J, Tang G (2019) Perspectives on microRNAs and phased small interfering RNAs in maize (Zea mays L.): functions and big impact on agronomic traits enhancement. Plants 8(6):170

  • Zhang Y, Wendte JM, Ji L, Schmitz RJ (2020) Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc Natl Acad Sci 117(9):4874–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ye P, Wu Y, Zhai E (2022) Experimental study on simultaneous heat-water-salt migration of bare soil subjected to evaporation. J Hydrol 609:127710

    Article  CAS  Google Scholar 

  • Zhao S, Cheng L, Gao Y et al (2019a) Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res 29:54–66

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Zhan Z, Jiang D (2019b) Histone modifications and their regulatory roles in plant development and environmental memory. J Genet Genomics 46:467–476

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lu Z, Wang L, Jin B (2020) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22(1):117. https://doi.org/10.3390/ijms22010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen L, Xia H et al (2017) Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep 7:1–13

    Google Scholar 

  • Zheng J, Zeng E, Du Y, He C, Hu Y, Jiao Z, Wang K, Li W, Ludens M, Fu J, Wang H (2019) Temporal small rna expression profiling under drought reveals a potential regulatory role of small nucleolar rnas in the drought responses of maize. Plant Gen 12(1):180058

    Article  Google Scholar 

  • Zhong S-H, Liu J-Z, Jin H et al (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 110:9171–9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Xie W, Xu D, Miki D, Tang K, Huang CF, Zhu JK (2018) DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 115(42):9962-E9970

  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga DL, De Paola D, Janni M, Curci PL, Sonnante G (2017) Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS ONE 01832:53

    Google Scholar 

  • Zuo ZF, He W, Li J, Mo B, Liu L (2021) Small RNAs: the essential regulators in Plant Thermotolerance. Front Plant Sci 12:726762. https://doi.org/10.3389/fpls.2021.726762

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo DD, Ahammed GJ, Guo DL (2023) Plant transcriptional memory and associated mechanism of abiotic stress tolerance. Plant Physiol Biochem 107917. https://doi.org/10.1016/j.plaphy.2023.107917

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

ZNÖ and UKC conceived the idea and planned the review. MDJ prepared figures and prepared initial draft of manuscript. UKC and BAS prepared tables and assisted in writing. ZNÖ and AFG critically reviewed. All the authors read and approved the final draft.

Corresponding author

Correspondence to Muhammad Daniyal Junaid.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors reviewed and approved the review manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaid, M.D., Chaudhry, U.K., Şanlı, B.A. et al. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 24, 74 (2024). https://doi.org/10.1007/s10142-024-01354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01354-7

Keywords

Navigation