Skip to main content
Log in

Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

A Correction to this article was published on 06 July 2023

This article has been updated

Abstract

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used during the current study are available from the corresponding author upon reasonable request.

Change history

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari KN, Edwards OR, Wang S, Ridsdill-Smith TJ, Buirchell B (2012) The role of alkaloids in conferring aphid resistance in yellow lupin (Lupinus luteus L.). Crop Pasture Sci 63:444–451

    CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) “Volatile science? Metabolic engineering of terpenoids in plants.” Trends in Plant Science 10:594–602

    CAS  PubMed  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Google Scholar 

  • Alemu M (2020) Trend of biotechnology applications in pest management: a review. International Journal of Applied Sciences and Biotechnology 8:108–131

    Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:1–11

    CAS  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Zaidi S-e-A, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:1–13

    Google Scholar 

  • Alquézar B, Volpe HXL, Magnani RF, Pedreira M, de Miranda M, Santos A, Wulff NA, Bento JMS, Parra JRP, Bouwmeester H, Peña L (2017) β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Sci Rep 7:5639

    PubMed  PubMed Central  Google Scholar 

  • Arnold PA, Kruuk LEB, Nicotra AB (2019) How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol 222:1235–1241

    PubMed  Google Scholar 

  • Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S (2022) Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 60:108006

    CAS  PubMed  Google Scholar 

  • Azameti MK, Dauda WP (2021) Base editing in plants: applications, challenges, and future prospects. Front Plant Sci 12:664997

    PubMed  PubMed Central  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    PubMed  PubMed Central  Google Scholar 

  • Barbehenn RV, Peter C, Constabel. (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565

    CAS  PubMed  Google Scholar 

  • Barrangou R (2015) The roles of CRISPR–Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41

    CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci 103:10509–10513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belfort M, Bonocora RP (2014) Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol Biol 1123:1–26

    PubMed  PubMed Central  Google Scholar 

  • Benelli G, Canale A, Toniolo C, Higuchi A, Murugan K, Pavela R, Nicoletti M (2017) Neem (Azadirachta indica): towards the ideal insecticide? Nat Prod Res 31:369–386

    CAS  PubMed  Google Scholar 

  • Bent AF (2022) Exploring soybean resistance to soybean cyst nematode. Annu Rev Phytopathol 60:379–409

    PubMed  Google Scholar 

  • Bhatia V, Maisnam J, Jain A, Sharma KK, Bhattacharya R (2015) Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2. Ann Bot 115:581–591

    CAS  PubMed  Google Scholar 

  • Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67

    CAS  PubMed  Google Scholar 

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. Semin Cell Dev Biol 96:65–76. https://doi.org/10.1016/j.semcdb.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci 109:20124–20129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Books, Anastacia (2019) New biotechnological approaches to insect pest management and crop protection; gene editing approach (CRISPR-Cas system)

    Google Scholar 

  • Brunetti AE, Carnevale Neto F, Vera MC, Taboada C, Pavarini DP, Bauermeister A, Lopes NP (2018) An integrative omics perspective for the analysis of chemical signals in ecological interactions. Chem Soc Rev 47:1574–1591

    CAS  PubMed  Google Scholar 

  • Bueno PCP, Lopes NP (2020) Metabolomics to characterize adaptive and signaling responses in legume crops under abiotic stresses. ACS Omega 5:1752–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bush William S, Moore Jason H (2012) ’Chapter 11: genome-wide association studies. Plos Computational Biology 8:e1002822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Buono D (2021) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763

  • Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS (2020) Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent advances in natural products analysis. Elsevier. https://doi.org/10.1016/b978-0-12-816455-6.00015-9

  • Caser M, Chitarra W, D’Angiolillo F, Perrone I, Demasi S, Lovisolo C, Pistelli L, Pistelli L, Scariot V (2019) Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod 129:85–96

    CAS  Google Scholar 

  • Casteel CL, Walling LL, Paine TD (2006) Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomol Exp Appl 121:67–72

    CAS  Google Scholar 

  • Chae S-Y, Lee K, Do J-W, Hong S-C, Lee K-H, Cho M-C, Yang E-Y, Yoon J-B (2022) QTL Mapping of resistance to bacterial wilt in pepper plants (Capsicum annuum) using genotyping-by-sequencing (GBS). Horticulturae 8:115

    Google Scholar 

  • Chang H-X, Hartman GL (2017) Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front Plant Sci 8:670

    PubMed  PubMed Central  Google Scholar 

  • Chang H-X, Lipka AE, Domier LL, Hartman GL (2016) Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology 106:1139–1151

    CAS  PubMed  Google Scholar 

  • Chaparro-Garcia A, Kamoun S, Nekrasov V (2015) Boosting plant immunity with CRISPR/Cas. Genome Biol 16:1–4

    Google Scholar 

  • Chaudhry A, Hassan AU, Khan SH, Abbasi A, Hina A, Khan MT, Abdelsalam NR (2023) The changing landscape of agriculture: role of precision breeding in developing smart crops. Funct Integr Genomics 23:167

    CAS  PubMed  Google Scholar 

  • Chen J, Xin Hu, Shi T, Yin H, Sun D, Hao Y, Xia X, Luo J, Fernie AR, He Z (2020) Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnol J 18:1722–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F (2021) Plant secondary metabolites: an opportunity for circular economy. Molecules 26:495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Pluskal T, Aubry S, Weng J-K (2018) Contribution of untargeted metabolomics for future assessment of biotech crops. Trends Plant Sci 23:1047–1056

    CAS  PubMed  Google Scholar 

  • Claros Cuadrado JL, Pinillos EO, Tito R, Mirones CS, Gamarra Mendoza NN (2019) Insecticidal properties of capsaicinoids and glucosinolates extracted from Capsicum chinense and Tropaeolum tuberosum. Insects 10:132

    Google Scholar 

  • Cortes T, Laura ZZ, Jianming Yu (2021) Status and prospects of genome-wide association studies in plants. The Plant Genome 14:e20077

    Google Scholar 

  • Costa-Arbulú C, Gianoli E, Gonzáles WL, Niemeyer HM (2001) Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense. J Chem Ecol 27:273–283

    PubMed  Google Scholar 

  • Cseke LJ, Lu CR, Kornfeld A, Kaufman PB, Kirakosian A (2006) “How and why these compounds are synthesized by plants”, Natural Products from Plants, 2nd edn. Taylor & Francis, Boca Raton, FL, USA, pp 51–100

    Google Scholar 

  • de Souza P, Leonardo SA, Scossa F, Fernie AR (2021) Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 18:733–746

    Google Scholar 

  • Deen R, Ramesh K, Padmavathi G, Viraktamath BC, Ram T (2017) Mapping of brown planthopper [Nilaparvata lugens (Stål)] resistance gene (bph 5) in rice (Oryza sativa L.). Euphytica 213:1–14

    CAS  Google Scholar 

  • DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125:160–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewick Paul M (2002) Medicinal natural products: a biosynthetic approach (John Wiley & Sons)

    Google Scholar 

  • Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK (2022) Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23:2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A (2014) The V at locus encodes for a CC-NBS-LRR protein that confers resistance to A phis gossypii infestation and A. gossypii-mediated virus resistance. Plant J 80:993–1004

    CAS  PubMed  Google Scholar 

  • Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660

    CAS  PubMed  Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    CAS  PubMed  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Elattar MA, Karikari B, Li S, Song S, Cao Y, Aslam M, Hina A, Abou-Elwafa SF, Zhao T (2021) Identification and validation of major QTLs, epistatic interactions, and candidate genes for soybean seed shape and weight using two related RIL populations. Front Genet 12:666440

    PubMed  PubMed Central  Google Scholar 

  • Elzinga DA, Jander G (2013) The role of protein effectors in plant–aphid interactions. Curr Opin Plant Biol 16:451–456

    CAS  PubMed  Google Scholar 

  • Fernández M, Rubén MP, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Giménez EM, Gondolf J, Nordmann A, Gruden K (2022) Insect pest management in the age of synthetic biology. Plant Biotechnol J 20:25–36

    Google Scholar 

  • Fondong VN (2017) The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front Plant Sci 8:408

    PubMed  PubMed Central  Google Scholar 

  • Fu Y-W, Dai X-Y, Wang W-T, Yang Z-X, Zhao J-J, Zhang J-P, Wen W, Zhang F, Oberg KC, Zhang L (2021) ’Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ. MMEJ and HDR Editing’, Nucleic Acids Research 49:969–985

    CAS  PubMed  Google Scholar 

  • Furlan AL, Bianucci E, Castro S, Dietz K-J (2017) Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Sci 263:12–22

    CAS  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    CAS  PubMed  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops & Food 8:1–12

    Google Scholar 

  • Ghasemi S, Kumleh HH, Kordrostami M (2019) Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. Protoplasma 256:279–290

    CAS  PubMed  Google Scholar 

  • Ghosh G, Ganguly S, Purohit A, Chaudhuri RK, Das S, Chakraborti D (2017) Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Rep 36:1037–1051

    CAS  PubMed  Google Scholar 

  • Giri CC, Zaheer M (2016) “Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal”, Plant Cell. Tissue and Organ Culture (PCTOC) 126:1–18

    CAS  Google Scholar 

  • Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. Adv Agron 124:201–230

    CAS  Google Scholar 

  • Guerrieri A, Dong L, Bouwmeester HJ (2019) Role and exploitation of underground chemical signaling in plants. Pest Manag Sci 75:2455–2463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães EP, Ruane J, Scherf BD, Sonnino A (2007) Marker-assisted selection: status and future perspectives in crops, livestock, forestry and fish

    Google Scholar 

  • Hallmann CA, Foppen RuudPB, Van Turnhout CAM, De Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343

    CAS  PubMed  Google Scholar 

  • Hardy NB, Otto SP (2014) Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proceedings of the Royal Society b: Biological Sciences 281:20132960

    PubMed Central  Google Scholar 

  • Harrison MJ (2003) “Plant microbe symbioses: similarities of mycorrhyizal and bacterial symbiosis”, Annual Review of Microbiology

    Google Scholar 

  • Hayat F, Iqbal S, Coulibaly D, Razzaq MK, Nawaz MA, Jiang W, Shi T, Gao Z (2021) An insight into dwarfing mechanism: contribution of scion-rootstock interactions toward fruit crop improvement. Fruit Research 1:1–11

    Google Scholar 

  • Hazarika N, Acharjee S, Boruah RR, Babar K, Parimi S, Char B, Armstrong J, Moore A, Higgins TJV, Sarmah BK (2021) Enhanced expression of Arabidopsis rubisco small subunit gene promoter regulated Cry1Ac gene in chickpea conferred complete resistance to Helicoverpa armigera. J Plant Biochem Biotechnol 30:243–253

    CAS  Google Scholar 

  • Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT (2010) Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    CAS  PubMed  Google Scholar 

  • Hernández-Soto A, Chacón-Cerdas R (2021) RNAi crop protection advances. Int J Mol Sci 22:12148

    PubMed  PubMed Central  Google Scholar 

  • Hilda K, Bhuvaragavan S, Kamatchi R, Meenakumari M, Janarthanan S (2022) Cloning, expression and characterization of arcelin and its impact on digestive enzymes of the stored product insect pest, Callosobruchus maculatus (F.). Pest Biochem Physiol 180:104982

  • Hina A, Cao Y, Song S, Li S, Sharmin RA, Elattar MA, Bhat JA, Zhao T (2020) High-resolution mapping in two RIL populations refines major “QTL Hotspot” regions for seed size and shape in soybean (Glycine max L.). Int J Mol Sci 21:1040

  • Huang W-Y, Cai Y-Z, Zhang Y (2009) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Google Scholar 

  • Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI (2021) Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci 12:631810

  • Isah, Tasiu. 2019. 'Stress and defense responses in plant secondary metabolites production', Biological Research, 52.

  • Isman MB, Paluch G (2011) Needles in the haystack: exploring chemical diversity of botanical insecticides. Green Trends in Insect Control. Royal Society of Chemistry, Cambridge, London, pp 248–265

    Google Scholar 

  • Ivanov AA, Ukladov EO, Golubeva TS (2021) Phytophthora infestans: an overview of methods and attempts to combat late blight. Journal of Fungi 7:1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaba J, Bhandi S, Deshmukh S, Pallipparambil GR, Mishra SP, Arora N (2021) Identification, evaluation and utilization of resistance to insect pests in grain legumes: advancement and restrictions. In: Genetic Enhancement in Major Food Legumes. Springer, Cham, pp 197–230

  • Jaiswal DK, Raju SVS, Kumar GS, Sharma KR, Singh DK, Vennela PR (2018) Biotechnology in plant resistance to insects. Indian Journal of Agriculture and Allied Sciences 4:1–18

    Google Scholar 

  • Janarthanan S, Seshadri S, Ignacimuthu S (2002) Arcelins—a potential new age protein anti-metabolite in legume seed defense against stored product pests

    Google Scholar 

  • Janarthanan S, Suresh P, Radke G, Morgan TD, Oppert B (2008) Arcelins from an Indian wild pulse, Lablab purpureus, and insecticidal activity in storage pests. J Agric Food Chem 56:1676–1682

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi MJ, Raj VP, Solanki CB, Vaishali VB (2020) Role of biotechnology in insect-pests management. Agric Food e-Newslett 2:574–576

    Google Scholar 

  • Jun TH, Mian R, Michel AP (2013) Genetic mapping of three quantitative trait loci for soybean aphid resistance in PI 567324. Heredity 111:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H-Y, Kang S-M, Kang Y-M, Kang M-J, Yun D-J, Bahk J-D, Yang J-K, Choi M-S (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 33:987–990

    CAS  Google Scholar 

  • Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell, Tissue and Organ Culture (PCTOC) 120:813–839

    CAS  Google Scholar 

  • Kang S-M, Min J-Y, Kim Y-D, Kang Y-M, Park D-J, Jung H-N, Kim S-W, Choi M-S (2006) Effects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. In Vitro Cellular & Developmental Biology-Plant 42:44–49

    CAS  Google Scholar 

  • Kang S-M, Min J-Y, Yong-Duck Kim CS, Karigar S-W, Goo G-H, Choi M-S (2009) Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol 139:84–88

    CAS  PubMed  Google Scholar 

  • Karlsson MF, Birgersson G, Witzgall P, Lekfeldt JDS, Nimal Punyasiri PA, Bengtsson M (2013) Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively different potatoes Solanum tuberosum L. Phytochemistry 85:72–81

    CAS  PubMed  Google Scholar 

  • Karuppiah H, Kirubakaran N, Sundaram J (2018) Genetic resources for arcelin, a stored product insect antimetabolic protein from various accessions of pulses of Leguminosae. Genet Resour Crop Evol 65:79–90

    CAS  Google Scholar 

  • Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey MLF, Carneiro NP, Gandra P, Narva KE, Siegfried BD (2015) Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochemistry and Molecular Biology 63:54–62

    CAS  PubMed  Google Scholar 

  • Kistner MB, Galiano-Carneiro AL, Kessel B, Presterl T, Miedaner T (2021) Multi-parental QTL mapping of resistance to white spot of maize (Zea mays) in southern Brazil and relationship to QTLs of other foliar diseases. Plant Breeding 140:801–811

    CAS  Google Scholar 

  • Klingler J, Kovalski I, Silberstein L, Thompson GA, Perl-Treves R (2001) Mapping of cotton-melon aphid resistance in melon. J Am Soc Hortic Sci 126:56–63

    CAS  Google Scholar 

  • Korinsak S, Wongsaprom C, Jamboonsri W, Sriprakhon S, Sirithunya K, Vanavichit A, Toojinda T (2022) Identification of broad-spectrum resistance QTLs against rice blast fungus and their application in different rice genetic backgrounds. J Genet 101:16

    CAS  PubMed  Google Scholar 

  • Kortbeek RWJ, van der Gragt M, Bleeker PM (2019) Endogenous plant metabolites against insects. Eur J Plant Pathol 154:67–90

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:1–9

    Google Scholar 

  • Ku Y-S, Ng M-S, Cheng S-S, Lo A-Y, Xiao Z, Shin T-S, Chung G, Lam H-M (2020) Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 12:1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunte N, McGraw E, Bell S, Held D, Avila L-A (2020) Prospects, challenges and current status of RNAi through insect feeding. Pest Manag Sci 76:26–41

    CAS  PubMed  Google Scholar 

  • Kusolwa PM, Myers JR (2012) Peptide sequences from seed storage proteins of tepary bean (Phaseolus acutifolius) accession G40199 demonstrate the presence of multiple variants of APA proteins. Int J Biochem Biotechnol 1:012–018

    Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    CAS  PubMed  Google Scholar 

  • Li H, Guan R, Guo H, Miao X (2015) New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant, Cell Environ 38:2277–2285

    CAS  PubMed  Google Scholar 

  • Li Y, Kong D, Ying Fu, Sussman MR, Hong Wu (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89

    CAS  PubMed  Google Scholar 

  • Li C, Brant E, Budak H, Zhang B (2021) CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-SCIENCE B 22:253–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Chao, Chu Wen, Gill Rafaqat Ali, Sang Shifei, Shi Yuqin, Xuezhi Hu, Yang Yuting, Zaman Qamar U, Zhang Baohong (2022) “Computational tools and resources for CRISPR/Cas genome editing”, Genomics, Proteomics & Bioinformatics

    Google Scholar 

  • Lindeboom RGH, Vermeulen M, Lehner B, Supek F (2019) The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet 51:1645–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvinov DY, Karlov GI, Divashuk MG (2021) Metabolomics for crop breeding: General considerations. Genes 12:1602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Kongming Wu, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    CAS  PubMed  Google Scholar 

  • Lu H-P, Luo T, Hao-wei Fu, Wang L, Tan Y-Y, Huang J-Z, Wang Q, Ye G-Y, Gatehouse AMR, Lou Y-G (2018) Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nature Plants 4:338–344

    CAS  PubMed  Google Scholar 

  • Ludvíková M, Griga M (2022) Pea transformation: history, current status and challenges. Czech Journal of Genetics and Plant Breeding 58:127–161

    Google Scholar 

  • Mabry T, Markham KR, Thomas MB (2012) The systematic identification of flavonoids. Springer Science & Business Media, New York, USA

    Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    CAS  PubMed  Google Scholar 

  • Mahmood MA, Naqvi RZ, Siddiqui HA, Amin I, Mansoor S (2023) Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control. J Pest Sci 96:427–440

    CAS  Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    CAS  PubMed  Google Scholar 

  • Malone LA, Barraclough EI, Lin-Wang K, Stevenson DE, Allan AC (2009) ’Effects of red‐leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, Spodoptera litura and Helicoverpa armigera. Entomologia Experimentalis et Applicata 133:117–127

    Google Scholar 

  • Mamta B, Rajam MV (2017) RNAi technology: a new platform for crop pest control. Physiol Mol Biol Plants 23:487–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mañero FJ, Gutiérrez EA, Gomez MSM, Sierra MDS, Solano BR (2012) Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 50:1201–1209

    PubMed  Google Scholar 

  • Matova PM, Kamutando CN, Warburton ML, Paul Williams W, Magorokosho C, Shimelis H, Labuschagne M, Day R, Gowda M (2023) New techniques for breeding maize (Zea mays) varieties with fall armyworm resistance and market-preferred traits for sub-Saharan Africa. Plant Breed 142:1–11

    Google Scholar 

  • Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC (1997) Overview—flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res 22:419–425

    CAS  PubMed  Google Scholar 

  • Mehari TG, Fang H, Feng W, Zhang Y, Umer MJ, Han J, Ditta A, Khan MKR, Liu F, Wang K (2023) Genome-wide identification and expression analysis of terpene synthases in Gossypium species in response to gossypol biosynthesis. Funct Integr Genom 23:197

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7:1132

  • Moon TT, Maliha IJ, Khan AAM, Moutoshi Chakraborty Md, Sharaf Uddin Md, Amin R, Islam T (2022) CRISPR-Cas genome editing for insect pest stress management in crop plants. Stresses 2:493–514

    Google Scholar 

  • Moorthy PNK, Kumar NRP, Mani M, Saroja S (2022) Pests and their management in leguminous vegetables: (French Beans, Sweet Peas, Cowpea, Vegetable Pigeon Pea, Dolichos Bean, Red Kidney and Cluster Beans). Trends Horticult Entomol 1031–49

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    CAS  PubMed  Google Scholar 

  • Morrison III, William R, Scully ED, Campbell JF (2021) Towards developing areawide semiochemical-mediated, behaviorally-based integrated pest management programs for stored product insects. Pest Manag Sci 77:2667–2682

    CAS  PubMed  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2019) Adapting legume crops to climate change using genomic approaches. Plant, Cell Environ 42:6–19

    CAS  PubMed  Google Scholar 

  • Mubarik MS, Wang X, Khan SH, Ahmad A, Khan Z, Amjid MW, Razzaq MK, Ali Z, Azhar MT (2021) Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants. GM Crops & Food 12:647–658

    Google Scholar 

  • Mumm R, Posthumus MA, Dicke M (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant, Cell Environ 31:575–585

    CAS  PubMed  Google Scholar 

  • Muzquiz M, Varela A, Burbano C, Cuadrado C, Guillamón E, Pedrosa MM (2012) ’Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochemistry Reviews 11:227–244

    CAS  Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41:1931–1939

    CAS  Google Scholar 

  • Ncube B, Van Staden J (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20:12698–12731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nombela G, Williamson VM, Muñiz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    CAS  PubMed  Google Scholar 

  • Nosil P (2002) Transition rates between specialization and generalization in phytophagous insects. Evolution 56:1701–1706

    CAS  PubMed  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Oksman-Caldentey K-M, Inzé D (2004) Natural compounds derived from plants can be categorized into three different groups according to their final use in developing a drug. Trends Plant Sci 9:433–440

    CAS  PubMed  Google Scholar 

  • Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJA, Dicke M (2014) Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3, 7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 65:2203–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz R (1998) Cowpeas from Nigeria: a silent food revolution. Outlook on Agriculture 27:125–128

    Google Scholar 

  • Osbourn A, Papadopoulou KK, Qi X, Field B, Wegel E (2012) Finding and analyzing plant metabolic gene clusters. Methods Enzymol 517:113–38

    CAS  PubMed  Google Scholar 

  • Padilla-González GF, Frey M, Gómez-Zeledón J, Da Costa FB, Spring O (2019) Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Sci Rep 9:1–15

    Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus Thuringiensis toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, Cress BF, Knott GJ, Jacobsen SE, Banfield JF, Doudna JA (2020) CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369:333–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavela R (2007) Possibilities of botanical insecticide exploitation in plant protection. Pest Technology 1:47–52

    Google Scholar 

  • Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Prot Sci 52:229–241

    CAS  Google Scholar 

  • Peng G, Xie J, Guo R, Keyhani NO, Zeng D, Yang P, Xia Y (2021) Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests. J Pest Sci 94:969–980

    CAS  Google Scholar 

  • Perkin LC, Adrianos SL, Oppert B (2016) Gene disruption technologies have the potential to transform stored product insect pest control. Insects 7:46

    PubMed  PubMed Central  Google Scholar 

  • Prakash S, Kumar M, Radha SK, Susan Jaconis E, Parameswari KS, Dhumal S, Senapathy M, Deshmukh VP (2023) The resilient cotton plant: uncovering the effects of stresses on secondary metabolomics and its underlying molecular mechanisms. Funct Integr Genomics 23:183

    CAS  PubMed  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJV, Hogan SP (2005) Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    CAS  PubMed  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    CAS  PubMed  Google Scholar 

  • Pugsley CE, Isaac RE, Warren NJ, Cayre OJ (2021) Recent advances in engineered nanoparticles for RNAi-mediated crop protection against insect pests. Frontiers in Agronomy 3:652981

    Google Scholar 

  • Qin D, Liu XY, Miceli C, Zhang Q, Wang PW (2019) Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnol 19:66

    PubMed  PubMed Central  Google Scholar 

  • Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I (2023) Improvement of soybean; a way forward transition from genetic engineering to new plant breeding technologies. Mol Biotechnol 65:162–180

    CAS  PubMed  Google Scholar 

  • Rajput, Ruchika, Jogindra Naik, Prashant Misra, Prabodh Kumar Trivedi, and Ashutosh Pandey. 2022. 'Gene pyramiding in transgenic plant development: approaches and challenges', Journal of Plant Growth Regulation: 1–19.

  • Rakha M, Bouba N, Ramasamy S, Regnard J-L, Hanson P (2017) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Resour Crop Evol 64:1011–1022

    CAS  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182

    PubMed  PubMed Central  Google Scholar 

  • Raven PH, Wagner DL (2021) Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc Natl Acad Sci 118:e2002548117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N (2022) Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 22:1189–1209

    CAS  PubMed  Google Scholar 

  • Razzaq, M. K., M. Aleem, S. Mansoor, M. A. Khan, S. Rauf, S. Iqbal, and K. H. M. Siddique. 2021. 'Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops', Int J Mol Sci, 22.

  • Razzaq MK, Akhter M, Ahmad RM, Cheema KL, Hina A, Karikari B, Raza G, Xing G, Gai J, Khurshid M (2022) CRISPR-Cas9 based stress tolerance: new hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep 49:8977–8985

    CAS  PubMed  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017b) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences 1:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salim, Muhammad, Ayhan Gökçe, Muhammad Nadir Naqqash, and Allah Bakhsh. 2020. 'Gene pyramiding: an emerging control strategy against insect pests of agronomic crops', Agronomic Crops: Volume 3: Stress Responses and Tolerance: 285–312.

  • Sang H, Kim J-I (2020) Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports 14:1–8

    Google Scholar 

  • Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry 1:168–182

    Google Scholar 

  • Schoen A, Yadav I, Shuangye Wu, Poland J, Rawat N, Tiwari V (2023) Identification and high-resolution mapping of a novel tiller number gene (tin6) by combining forward genetics screen and MutMap approach in bread wheat. Funct Integr Genomics 23:157

    CAS  PubMed  Google Scholar 

  • Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59:1212–1221

    CAS  PubMed  Google Scholar 

  • Shamshirgaran, Yasaman, Jun Liu, Huseyin Sumer, Paul J Verma, and Amir Taheri-Ghahfarokhi. 2022. 'Tools for efficient genome editing; ZFN, TALEN, and CRISPR.' in, Applications of Genome Modulation and Editing (Springer).

  • Sharmin RA, Karikari B, Fangguo Chang GM, Amin Al, Bhuiyan MR, Hina A, Lv W, Chunting Z, Begum N, Zhao T (2021) Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean. BMC Plant Biol 21:1–17

    Google Scholar 

  • Siddiqui, Zahid Hameed, Abdul Mujib, Junaid Aslam, Khalid Rehman Hakeem, and Talat Parween. 2013. 'In vitro production of secondary metabolites using elicitor in Catharanthus roseus: a case study', Crop Improvement: New Approaches and Modern Techniques: 401–19.

  • Silva KFAS, Michereff-Filho M, Fonseca MEN, Silva-Filho JG, Texeira ACA, Moita AW, Torres JB, Fernández-Muñoz R, Boiteux LS (2014) Resistance to B emisia tabaci biotype B of S olanum pimpinellifolium is associated with higher densities of type IV glandular trichomes and acylsugar accumulation. Entomol Exp Appl 151:218–230

    CAS  Google Scholar 

  • Silver K, Cooper AMW, Zhu KY (2021) Strategies for enhancing the efficiency of RNA interference in insects. Pest Manag Sci 77:2645–2658

    CAS  PubMed  Google Scholar 

  • Singh Ram J (2006) Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable Crops, Volume 3 (CRC press)

    Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS One 8:e54985

  • Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368

    CAS  PubMed  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:e217

    PubMed  PubMed Central  Google Scholar 

  • Stuart J (2015) Insect effectors and gene-for-gene interactions with host plants. Current Opinion in Insect Science 9:56–61

    PubMed  Google Scholar 

  • Sukumaran S, Yu J (2014) Association mapping of genetic resources: achievements and future perspectives. In: Tuberosa R, Graner A, Frison E (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht, pp 207–235. https://doi.org/10.1007/978-94-007-7572-5_9

  • Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford R, Denison. (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215

    PubMed  PubMed Central  Google Scholar 

  • Tibbs Cortes L, Zhang Z, Yu J (2021) Status and prospects of genome‐wide association studies in plants. Plant Genome 14:e20077

  • Tran Ngoc Tung, Danner Eric, Li Xun, Graf Robin, Lebedin Mikhail, de la Rosa Kathrin, Kühn Ralf, Rajewsky Klaus, Chu Van Trung (2022) Precise CRISPR-Cas–mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells. Science Advances 8:9106

    Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    CAS  PubMed  Google Scholar 

  • Twaij BM, Hasan MN (2022) Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. International Journal of Plant Biology 13:4–14

    CAS  Google Scholar 

  • Van Esse H, Peter LR, van der Does D (2019) GM approaches to improve disease resistance in crops. New Phytol 225:70–86

    PubMed  PubMed Central  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Springer Science & Business Media, Dordrecht

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics 101:5–22

    CAS  PubMed  Google Scholar 

  • Wang T, Xu SS, Harris MO, Jinguo Hu, Liu L, Cai X (2006) Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113:611–618

    CAS  PubMed  Google Scholar 

  • Wang H, Yan H, Haiping Du, Chao M, Gao Z, Deyue Yu (2015) Mapping quantitative trait loci associated with soybean resistance to common cutworm and soybean compensatory growth after defoliation using SNP marker-based genome-wide association analysis. Mol Breeding 35:1–15

    Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    CAS  PubMed  Google Scholar 

  • Wang H, Yu Shi Lu, Wang SL, Shuwen Wu, Yang Y, Feyereisen R, Yidong Wu (2018) CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun 9:4820

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhang H, Zhu H (2019) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticult Res 6:1–13

    Google Scholar 

  • Wang D, Yang L, Shi C, Li S, Tang H, He C, Cai N, Duan A, Gong H (2022) QTL mapping for growth-related traits by constructing the first genetic linkage map in Simao pine. BMC Plant Biol 22:48

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK (2022) Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theor Appl Genet 135:3875–3895

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Li S, Wang Y, Wang B, Fan G, Zeng Q, Zhao F, Congping Xu, Zhang X, Tang T (2021) Metabolome-based genome-wide association study provides genetic insights into the natural variation of foxtail millet. Front Plant Sci 12:665530

    PubMed  PubMed Central  Google Scholar 

  • Whitehorn PR, O’connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    CAS  PubMed  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    CAS  PubMed  Google Scholar 

  • Wouters FC, Blanchette B, Gershenzon J, Vassão DG (2016) Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev 15:1127–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

  • Xavier A, Thapa R, Muir WM, Rainey KM (2018) Population and quantitative genomic properties of the USDA soybean germplasm collection. Plant Genet Resour 16:513–523

    CAS  Google Scholar 

  • Xing G, Zhou B, Wang Y, Zhao T, Yu D, Chen S, Gai J (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theoret Appl Genet 125:859–875

    Google Scholar 

  • Yan S, Qian J, Cai C, Ma Z, Li J, Yin M, Ren B, Shen J (2020) Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J Pest Sci 93:449–459

    Google Scholar 

  • Yang X, Zhang B (2023) A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Funct Integr Genomics 23:182

    CAS  PubMed  Google Scholar 

  • Yang S, Li J, Zhang X, Qijun Zhang Ju, Huang J-Q, Hartl DL, Tian D (2013) Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proc Natl Acad Sci 110:18572–18577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Li, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed  PubMed Central  Google Scholar 

  • Yang Z, Li N, Kitano T, Li P, Spindel JE, Wang L, Bai G, Xiao Y, McCouch SR, Ishihara A (2021) Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. Plant J 106:1401–1413

    CAS  PubMed  Google Scholar 

  • Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422

    CAS  PubMed  Google Scholar 

  • Yu GT, Cai X, Harris MO, Yong Qiang Gu, Luo M-C, Xu SS (2009) Saturation and comparative mapping of the genomic region harboring Hessian fly resistance gene H26 in wheat. Theor Appl Genet 118:1589–1599

    CAS  PubMed  Google Scholar 

  • Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, Qin L-P (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232

    CAS  PubMed  Google Scholar 

  • Zalucki MP, Brower LP, Alonso, MA (2001) Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol Entomol 26:212–224

    Google Scholar 

  • Zaman QU, Li C, Cheng H, Qiong Hu (2019) Genome editing opens a new era of genetic improvement in polyploid crops. The Crop Journal 7:141–150

    Google Scholar 

  • Zaugg I, Magni C, Panzeri D, Daminati MG, Bollini R, Benrey B, Bacher S, Sparvoli F (2013) QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet 126:647–661

    CAS  PubMed  Google Scholar 

  • Zeng X, Yuan H, Dong X, Peng M, Jing X, Qijun Xu, Tang T, Wang Y, Zha S, Gao M (2020) Genome-wide dissection of co-selected UV-B responsive pathways in the UV-B adaptation of qingke. Mol Plant 13:112–127

    CAS  PubMed  Google Scholar 

  • Zhang G, Cuihua Gu, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor Appl Genet 118:473–482

    CAS  PubMed  Google Scholar 

  • Zhang G, Cuihua Gu, Wang D (2010) A novel locus for soybean aphid resistance. Theor Appl Genet 120:1183–1191

    CAS  PubMed  Google Scholar 

  • Zhang H, Yasmin F, Song B-H (2019) Neglected treasures in the wild—legume wild relatives in food security and human health. Curr Opin Plant Biol 49:17–26

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang Z, Unver T, Zhang B (2021) CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 29:207–221

    CAS  PubMed  Google Scholar 

  • Zhou Z, Jiang Yu, Wang Z, Gou Z, Lyu J, Li W, Yanjun Yu, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  PubMed  Google Scholar 

  • Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR (2022) Enhancing crop diversity for food security in the face of climate uncertainty. Plant J 109:402–414

    PubMed  Google Scholar 

  • Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nature Plants 2:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.K.R. and A.H. conceived and designed the project. A.H., M.K.R., A.A., M.M., H.J.A., I.U.H., and S.M. contributed to writing the original draft, data verification, and proofreading. A.H., A.A., A.M., B.K., J.A.B., G.R., and G.X. revised the paper. All authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Muhammad Khuram Razzaq or Aiman Hina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article contains an error. The author name “Muhammad Khurum Razzaq” should be corrected to “Muhammad Khuram Razzaq”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, M.K., Hina, A., Abbasi, A. et al. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 23, 217 (2023). https://doi.org/10.1007/s10142-023-01141-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01141-w

Keywords

Navigation