Functional & Integrative Genomics

, Volume 17, Issue 1, pp 27–37 | Cite as

Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach

  • Kusum Mehla
  • Jayashree Ramana
Original Article


Campylobacter jejuni remains a major cause of human gastroenteritis with estimated annual incidence rate of 450 million infections worldwide. C. jejuni is a major burden to public health in both socioeconomically developing and industrialized nations. Virulence determinants involved in C. jejuni pathogenesis are multifactorial in nature and not yet fully understood. Despite the completion of the first C. jejuni genome project in 2000, there are currently no vaccines in the market against this pathogen. Traditional vaccinology approach is an arduous and time extensive task. Omics techniques coupled with sequencing data have engaged researcher’s attention to reduce the time and resources applied in the process of vaccine development. Recently, there has been remarkable increase in development of in silico analysis tools for efficiently mining biological information obscured in the genome. In silico approaches have been crucial for combating infectious diseases by accelerating the pace of vaccine development. This study employed a range of bioinformatics approaches for proteome scale identification of peptide vaccine candidates. Whole proteome of C. jejuni was investigated for varied properties like antigenicity, allergenicity, major histocompatibility class (MHC)–peptide interaction, immune cell processivity, HLA distribution, conservancy, and population coverage. Predicted epitopes were further tested for binding in MHC groove using computational docking studies. The predicted epitopes were conserved; covered more than 80 % of the world population and were presented by MHC-I supertypes. We conclude by underscoring that the epitopes predicted are believed to expedite the development of successful vaccines to control or prevent C. jejuni infections albeit the results need to be experimentally validated.


C. jejuni Vaccine candidates Reverse vaccinology Antigenicity Allergenicity Docking 


Compliance with ethical standards


This research was supported by FAST TRACK Young Scientist Fellowship from DST (Department of Science and Technology), Ministry of Science and Technology, India, under the grant number SB/FT/LS-278/2012.

Conflict of interest

We confirm that there are no conflicts of interest associated with this publication. Ethical Approval and Informed Consent statements are not applicable to our manuscript.


  1. Akiba M, Lin J, Barton Y-W, Zhang Q (2006) Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57:52–60CrossRefPubMedGoogle Scholar
  2. Albert MJ (2014) Vaccines against Campylobacter jejuni. Austin J Clin Immunol 1:1013Google Scholar
  3. Alfredson DA, Korolik V (2007) Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett 277:123–132CrossRefPubMedGoogle Scholar
  4. Ashgar SSA, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, Turner DPJ, Ala’aldeen DAA (2007) CapA, an autotransporter protein of Campylobacter jejuni, mediates sssociation with human epithelial cells and colonization of the chicken gut. J Bacteriol 189:1856–1865CrossRefPubMedGoogle Scholar
  5. Bacchetta R, Gregori S, Roncarolo M-G (2005) CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev 4:491–496CrossRefPubMedGoogle Scholar
  6. Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW (2006) Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 6:165–185CrossRefPubMedGoogle Scholar
  7. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33:3390–3400CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:153–153CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bui H-H, Sidney J, Li W, Fusseder N, Sette A (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8:361–361CrossRefPubMedPubMedCentralGoogle Scholar
  10. Butt AM, Nasrullah I, Tahir S, Tong Y (2012) Comparative genomics analysis of mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 7:e43080CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428CrossRefPubMedGoogle Scholar
  12. Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J (1972) Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 125:390–392CrossRefPubMedGoogle Scholar
  13. Doro F, Liberatori S, Rodrã­Guez-Ortega MJ, Rinaudo CD, Rosini R, Mora M, Scarselli M, Altindis E, D’aurizio R, Stella M, Margarit I, Maione D, Telford JL, Norais N, Grandi G (2009) Surfome analysis as a fast track to vaccine discovery: identification of a novel protective antigen for group b streptococcus hypervirulent strain COH1. Mol Cell Proteomics 8:1728–1737CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doytchinova I, Flower D (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4CrossRefPubMedPubMedCentralGoogle Scholar
  15. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255CrossRefPubMedPubMedCentralGoogle Scholar
  16. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839PubMedPubMedCentralGoogle Scholar
  17. Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Campylobacter. ASM International, Washington, pp 121–138Google Scholar
  18. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299CrossRefPubMedGoogle Scholar
  19. Giuliani MM, Adu-Bobie J, Comanducci M, Aricã B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR (2011) Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 39:D913–D919CrossRefPubMedGoogle Scholar
  21. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31:3621–3624CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guerry P, Poly F, Riddle M, Maue AC, Chen Y-H, Monteiro MA (2012) Campylobacter polysaccharide capsules: virulence and vaccines. Front Cell Infect Microbiol 2:7CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harris JA, Roy K, Woo-Rasberry V, Hamilton DJ, Kansal R, Qadri F, Fleckenstein JM (2011) Directed evaluation of enterotoxigenic Escherichia coli autotransporter proteins as putative vaccine candidates. PLoS Negl Trop Dis 5:e1428CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang S-H, Triche T, Jong AY (2002) Infectomics: genomics and proteomics of microbial infections. Funct Integr Genomics 1:331–344CrossRefPubMedGoogle Scholar
  25. Ingale A, Goto S (2014) Prediction of CTL epitope, in silico modeling and functional analysis of cytolethal distending toxin (CDT) protein of Campylobacter jejuni. BMC Res Notes 7:92CrossRefPubMedPubMedCentralGoogle Scholar
  26. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72:212–213CrossRefGoogle Scholar
  27. Ketley JM (1997) Pathogenesis of enteric infection by campylobacter. Microbiology 143:5–21CrossRefPubMedGoogle Scholar
  28. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424–424CrossRefPubMedPubMedCentralGoogle Scholar
  29. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786CrossRefPubMedGoogle Scholar
  30. Li X, Yang H-W, Chen H, Wu J, Liu Y, Wei J-F (2014) In silico prediction of T and B cell epitopes of Der f 25 in Dermatophagoides farinae. Int J Genomics 2014:10Google Scholar
  31. Macindoe G, Mavridis L, Venkatraman V, Devignes M-D, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal group B streptococcus vaccine by multiple genome screen. Science (New York, NY) 309:148–150CrossRefGoogle Scholar
  33. Moriel DG, Scarselli M, Serino L, Mora M, Rappuoli R, Masignani V (2008) Genome-based vaccine development: a short cut for the future. Hum Vaccin 4:184–188CrossRefPubMedGoogle Scholar
  34. Muh HC, Tong JC, Tammi MT (2009) AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS One 4:e5861CrossRefPubMedPubMedCentralGoogle Scholar
  35. O’ryan M, Vidal R, Del Canto F, Carlos SJ, Montero D (2015) Vaccines for viral and bacterial pathogens causing acute gastroenteritis: part II: vaccines for shigella, salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 11:601–619CrossRefPubMedPubMedCentralGoogle Scholar
  36. Parker JMR, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites. Biochemistry 25:5425–5432CrossRefPubMedGoogle Scholar
  37. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, Van Vliet AHM, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668CrossRefPubMedGoogle Scholar
  38. Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132–132CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schrodinger, Llc (2010) The PyMOL molecular graphics system, Version 1.3r1Google Scholar
  41. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhütter HG (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037CrossRefPubMedGoogle Scholar
  42. Thevenet P, Shen Y, Maupetit J, Guyon FDR, Derreumaux P, TuffeRy P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(TheVenet P):W288–W293CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thakur S, Zhao S, Mcdermott PF, Harbottle H, Abbott J, English L, Gebreyes WA, White DG (2010) Antimicrobial resistance, virulence, and genotypic profile comparison of Campylobacter jejuni and Campylobacter coli isolated from humans and retail meats. Foodborne Pathog Dis 7:835–844CrossRefPubMedGoogle Scholar
  44. Thorpe C, Edwards L, Snelgrove R, Finco O, Rae A, Grandi G, Guilio R, Hussell T (2007) Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine 25:2252–2260CrossRefPubMedGoogle Scholar
  45. Yu NY, Wagner JR, Laird MR, Melli G, Rey SB, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zeng X, Xu F, Lin J (2010) Development and evaluation of CmeC subunit vaccine against Campylobacter jejuni. J Vaccines Vaccination 1:112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologySolanIndia

Personalised recommendations