Advertisement

Functional & Integrative Genomics

, Volume 11, Issue 2, pp 241–257 | Cite as

Identification of essential genes in C. jejuni genome highlights hyper-variable plasticity regions

  • Martin Stahl
  • Alain Stintzi
Original Paper

Abstract

A microarray transposon-based tracking approach was used to identify Campylobacter jejuni genes which are required for cell growth at 37°C, under a microaerophilic atmosphere and on a rich Mueller–Hinton medium. A transposon-based mutant library, comprised of 7,201 individual mutants was constructed, representing 4.48× coverage of the genome. An analysis of genes lacking a transposon insertion revealed 195 essential gene candidates. The function of these genes represent many of the expected core functions of the cell, such as energy metabolism, macromolecule and cofactor biosynthesis, cell structural proteins as well as basic cell processes. Forty-nine hypothetical proteins were also identified, further underlining the importance of currently unknown proteins and pathways within C. jejuni. Unlike other bacteria, the essential genes were not uniformly distributed along the chromosome with three main regions lacking essential genes. These particular regions corresponded to known hyper-variable plasticity regions of C. jejuni genome indicating, as expected, that these regions are dispensable in any given C. jejuni strain. Overall, this work identified dispensable and essential genes in C. jejuni that will ultimately lead to a better understanding of Campylobacter physiology.

Keywords

Campylobacter jejuni Essential genes Microarray Transposon-based mutant library Dispensable genes 

Notes

Acknowledgment

This work was supported by the Canadian Institutes of Health Research (to AS). The authors would like to thank James Butcher for its assistance in the design of Fig. 4.

References

  1. Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99(2):966–971PubMedCrossRefGoogle Scholar
  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMedGoogle Scholar
  3. Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Heinzen RA (2009) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191(5):1369–1381PubMedCrossRefGoogle Scholar
  4. Blaser, M. J. and Engberg, J. (2008). “Clinical aspects of Campylobacter jejuni and Campylobacter coli”. Campylobacter. I. Nachamkin, C. Szymanski and M. J. Blaser. Washington, ASM Press: 99–121.Google Scholar
  5. Crossley RA, Gaskin DJ, Holmes K, Mulholland F, Wells JM, Kelly DJ, van Vliet AH, Walton NJ (2007) Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl Environ Microbiol 73(24):7819–7825PubMedCrossRefGoogle Scholar
  6. D’Elia MA, Pereira MP, Brown ED (2009) Are essential genes really essential? Trends Microbiol 17(10):433–438PubMedCrossRefGoogle Scholar
  7. de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A, Cruaud C, Samair S, Lechaplais C, Gyapay G, Richez C, Durot M, Kreimeyer A, Le Fevre F, Schachter V, Pezo V, Doring V, Scarpelli C, Medigue C, Cohen GN, Marliere P, Salanoubat M, Weissenbach J (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 4:174PubMedGoogle Scholar
  8. Duong T, Konkel ME (2009) Comparative studies of Campylobacter jejuni genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic food-borne pathogen. Curr Opin Biotechnol 20(2):158–165PubMedCrossRefGoogle Scholar
  9. Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43(6):1387–1400PubMedCrossRefGoogle Scholar
  10. Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3(1):e15PubMedCrossRefGoogle Scholar
  11. French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K (2008) Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69(1):67–76PubMedCrossRefGoogle Scholar
  12. Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, Hallin PF, Newell DG, Toszeghy M, Ridley A, Manning G, Ussery DW (2010) Genomic characterization of Campylobacter jejuni strain M1. PLoS One 5:e12253Google Scholar
  13. Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C (2007) A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci USA 104(3):1009–1014PubMedCrossRefGoogle Scholar
  14. Garenaux A, Guillou S, Ermel G, Wren B, Federighi M, Ritz M (2008) Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. Res Microbiol 159(9–10):718–726PubMedCrossRefGoogle Scholar
  15. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684PubMedCrossRefGoogle Scholar
  16. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3(5):371–382PubMedCrossRefGoogle Scholar
  17. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68(3):518–537PubMedCrossRefGoogle Scholar
  18. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103(2):425–430PubMedCrossRefGoogle Scholar
  19. Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW (2007) Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8:162PubMedCrossRefGoogle Scholar
  20. Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galan JE (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74(8):4694–4707PubMedCrossRefGoogle Scholar
  21. Ji Y, Zhang B, Van SF, Horn, Warren P, Woodnutt G, Burnham MK, Rosenberg M (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293(5538):2266–2269PubMedCrossRefGoogle Scholar
  22. Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188(23):8259–8271PubMedCrossRefGoogle Scholar
  23. Knuth K, Niesalla H, Hueck CJ, Fuchs TM (2004) Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 51(6):1729–1744PubMedCrossRefGoogle Scholar
  24. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100(8):4678–4683PubMedCrossRefGoogle Scholar
  25. Kraemer PS, Mitchell A, Pelletier MR, Gallagher LA, Wasnick M, Rohmer L, Brittnacher MJ, Manoil C, Skerett SJ, Salama NR (2009) Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun 77(1):232–244PubMedCrossRefGoogle Scholar
  26. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  27. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100(12):7213–7218PubMedCrossRefGoogle Scholar
  28. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103(8):2833–2838PubMedCrossRefGoogle Scholar
  29. Muller S, Pflock M, Schar J, Kennard S, Beier D (2007) Regulation of expression of atypical orphan response regulators of Helicobacter pylori. Microbiol Res 162(1):1–14PubMedCrossRefGoogle Scholar
  30. Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186(14):4714–4729PubMedCrossRefGoogle Scholar
  31. Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE (2006) Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol 44:4125–4135Google Scholar
  32. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668PubMedCrossRefGoogle Scholar
  33. Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ, van Vliet AH (2007) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189(22):8402–8403PubMedCrossRefGoogle Scholar
  34. Poly F, Read T, Tribble DR, Baqar S, Lorenzo M, Guerry P (2007) Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect Immun 75(7):3425–3433PubMedCrossRefGoogle Scholar
  35. Poly F, Read TD, Chen YH, Monteiro MA, Serichantalergs O, Pootong P, Bodhidatta L, Mason CJ, Rockabrand D, Baqar S, Porter CK, Tribble D, Darsley M, Guerry P (2008) Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies. Infect Immun 76(12):5655–5667PubMedCrossRefGoogle Scholar
  36. Reid AN, Pandey R, Palyada K, Whitworth L, Doukhanine E, Stintzi A (2008) Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl Environ Microbiol 74(5):1598–1612PubMedCrossRefGoogle Scholar
  37. Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–7935PubMedCrossRefGoogle Scholar
  38. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84PubMedCrossRefGoogle Scholar
  39. Scholle MD, Gerdes SY (2008) Whole-genome detection of conditionally essential and dispensable genes in Escherichia coli via genetic footprinting. Methods Mol Biol 416:83–102PubMedCrossRefGoogle Scholar
  40. Song JH, Ko KS, Lee JY, Baek JY, Oh WS, Yoon HS, Jeong JY, Chun J (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19(3):365–374PubMedGoogle Scholar
  41. Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185(6):2009–2016PubMedCrossRefGoogle Scholar
  42. Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30(14):3152–3162PubMedCrossRefGoogle Scholar
  43. Zhou, Y. and Landweber, L. F. (2007). BLASTO: a tool for searching orthologous groups. Nucleic Acids Res 35(Web Server issue): W678–682.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations