Skip to main content
Log in

Integrating genes and phenotype: a wheat–Arabidopsis–rice glycosyltransferase database for candidate gene analyses

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Glycosyltransferases (GTs) constitute a very large multi-gene superfamily, containing several thousand members identified in sequenced organisms especially in plants. GTs are key enzymes involved in various biological processes such as cell wall formation, storage polysaccharides biosynthesis, and glycosylation of various metabolites. GTs have been identified in rice (Oryza sativa) and Arabidopsis thaliana, but their precise function has been demonstrated biochemically for only a few. In this work we have established a repertoire of virtually all the wheat (Triticum aestivum) GT sequences, using the large publicly available banks of expressed sequences. Based on sequence similarity with Arabidopsis and rice GTs compiled in the carbohydrate active enzyme database (CAZY), we have identified and classified these wheat sequences. The results were used to feed a searchable database available on the web (http://wwwappli.nantes.inra.fr:8180/GTIDB) that can be used for initiating an exhaustive candidate gene survey in wheat applied to a particular biological process. This is illustrated through the identification of GT families which are expressed during cell wall formation in wheat grain maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    PubMed  CAS  Google Scholar 

  • Almeida AM et al (2007) Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol Plant 43:167–177

    Article  CAS  Google Scholar 

  • Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amor Y et al (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A 92:9353–9357

    Article  PubMed  CAS  Google Scholar 

  • Apweiler R et al (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta (G) 1473:4–8

    CAS  Google Scholar 

  • Aspeborg H et al (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    Article  PubMed  CAS  Google Scholar 

  • Bacic A et al (2004) Cellulose synthase (CESA) and cellulose-synthase-like (CSL) gene families of barley. Abstr Pap Am Chem Soc 227:U292–U292

    Google Scholar 

  • Bencurova M et al (2003) Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie 85:413–422

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z et al (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  PubMed  CAS  Google Scholar 

  • Bouton S et al (2002) Quasimodo1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590

    Article  PubMed  CAS  Google Scholar 

  • Bowles D et al (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263

    Article  PubMed  CAS  Google Scholar 

  • Breton C et al (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R

    Article  PubMed  CAS  Google Scholar 

  • Brown DM et al (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Brown DM et al (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. The Plant Journal 5(6):1154–1168

    Article  CAS  Google Scholar 

  • Burton RA et al (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311:1940–1942

    Article  PubMed  CAS  Google Scholar 

  • Cao H et al (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch Biochem Biophys 373:135–146

    Article  PubMed  CAS  Google Scholar 

  • Castleden CK et al (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 135:1753–1764

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M, Burrell MM (2003) Starch modification in transgenic plants using glycogenin-like genes from Arabidopsis and other plants. International PCT Application No. WO 2003/014365

  • Cocuron J-C et al (2006) Glucan Synthase Activity Involved in Xyloglucan Biosynthesis Encoded by CslC Genes from Arabidopsis and Nasturtium. Plant Biology 2006, Boston, Massachusetts, USA

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert GDHJ, Henrissat B, Svensson B (eds) Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Coutinho PM et al (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  • Davies GJ, Henrissat B (2001) Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. In: Bowles D (ed) Plant Glyco-related Genomics. Biochemical Society, University of York, pp 1–7

    Google Scholar 

  • Dhugga KS et al (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ et al (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  PubMed  CAS  Google Scholar 

  • Egelund J et al (2004) A complementary bioinformatics approach to identify potential plant cell wall glycosyltransferase-encoding genes. Plant Physiol 136:2609–2620

    Article  PubMed  CAS  Google Scholar 

  • El-Bashiti T et al (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  • Gao M, Chibbar RN (2000) Isolation, characterization, and expression analysis of starch synthase IIa cDNA from wheat (Triticum aestivum L.). Genome 43:768–775

    Article  PubMed  CAS  Google Scholar 

  • Geisler-Lee J et al (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140:946–962

    Article  PubMed  CAS  Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hamann T et al (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286

    Article  CAS  Google Scholar 

  • Harholt J et al (2006) Arabinan deficient 1 Is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in arabidopsis. Plant Physiol 140:49–58

    Article  PubMed  CAS  Google Scholar 

  • Hazen SP et al (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  PubMed  CAS  Google Scholar 

  • Huang DY, Wang AY (1998) Purification and characterization of sucrose synthase isozymes from etiolated rice seedlings. Biochem Mol Biol Int 46:107–113

    PubMed  CAS  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Iwai H et al (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci U S A 99:16319–16324

    Article  PubMed  CAS  Google Scholar 

  • James MG et al (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Dormann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Lao NT et al (2003) Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol Biol 53:687–701

    Article  PubMed  Google Scholar 

  • Leonard R et al (2004) A genetic and structural analysis of the N-glycosylation capabilities of rice and other monocotyledons. Plant Mol Biol 55:631–644

    Article  PubMed  CAS  Google Scholar 

  • Li Z et al (1999) Cloning and characterization of a gene encoding wheat starch synthase I. Theor Appl Genet 98:1208–1216

    Article  CAS  Google Scholar 

  • Li ZY et al (2000) The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol 123:613–624

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (2003) Biochemical evidence linking a putative callose synthase gene with (1 -> 3)-beta-D-glucan biosynthesis in barley. Plant Mol Biol 53:213–225

    Article  PubMed  CAS  Google Scholar 

  • Li XM et al (2004) Molecular analysis of 10 coding regions from arabidopsis that are homologous to the MUR3 xyloglucan galactosyltransferase. Plant Physiol 134:940–950

    Article  PubMed  CAS  Google Scholar 

  • Lim EK, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. Embo J 23:2915–2922

    Article  PubMed  CAS  Google Scholar 

  • Liu JJJ et al (1998) Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci 134:11–20

    Article  CAS  Google Scholar 

  • Madson M et al (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    Article  PubMed  CAS  Google Scholar 

  • Milioni D et al (2001) Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol Biol 47:221–238

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RAC et al (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    Article  PubMed  CAS  Google Scholar 

  • Murai J et al (1999) Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234:71–79

    Article  PubMed  CAS  Google Scholar 

  • Orfila C et al (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222:613–622

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L et al (2002) An Arabidopsis callose synthase. Plant Mol Biol 49:559–566

    Article  PubMed  CAS  Google Scholar 

  • Pagny S et al (2003) Structural requirements for Arabidopsis beta 1,2-xylosyltransferase activity and targeting to the Golgi. Plant J 33:189–203

    Article  PubMed  CAS  Google Scholar 

  • Peña MJ et al (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the Complexity of Glucuronoxylan Biosynthesis. Plant Cell 19:549–563

    Article  PubMed  CAS  Google Scholar 

  • Philippe S et al (2006) Arabinoxylan and (1–>3),(1–>4)-beta-glucan deposition in cell walls during wheat endosperm development. Planta 224:1–13

    Article  CAS  Google Scholar 

  • Price JN et al (2002) Molecular Genetics of Non-processive Glycosyltransferases. In: A. S. o. P. Biologists, (Ed.), The Arabidopsis Book pp. 1–10

  • Reignault P et al (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519–529

    Article  CAS  Google Scholar 

  • Rhee SY et al (2003) The arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    Article  PubMed  CAS  Google Scholar 

  • Riedell W, Miernyk JA (1988) Glycoprotein synthesis in maize endosperm cells: the nucleoside diphosphate-sugar: dolichol-phosphate glycosyltransferases. Plant Physiol 87:420–426

    Article  PubMed  CAS  Google Scholar 

  • Ross J et al (2001) Higher plant glycosyltransferases. Genome Biol 2:1–6

    Article  Google Scholar 

  • Salnikov VV et al (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry 57:823–833

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L et al (2007) Plant Cell Wall Polysaccharides in Storage Organs: Xylans (Food Applications). In: Kamerling JP (ed) Comprehensive glycoscience from chemistry to systems biology. Elsevier Science, Oxford, pp 653–689

    Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plant. Annu Rev Cell Dev Biol 22:53–78

    Article  PubMed  CAS  Google Scholar 

  • Strasser R et al (2000) Molecular cloning and functional expression of beta 1,2-xylosyltransferase cDNA from Arabidopsis thaliana. Febs Letters 472:105–108

    Article  PubMed  CAS  Google Scholar 

  • Strasser R et al (2007) A Unique beta1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of N-Glycans Containing Lewis a Structures in Arabidopsis thaliana 10.1105/tpc.107.052985. Plant Cell 19:2278–2292

    Article  PubMed  Google Scholar 

  • Tetlow IJ et al (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Trevanion SJ et al (2004) Regulation of sucrose-phosphate synthase in wheat (Triticum aestivum) leaves. Functional Plant Biology 31:685–695

    Article  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • Voigt CA et al (2006) A comprehensive view on organ-specific callose synthesis in wheat (Triticum aestivum L.): glucan synthase-like gene expression, callose synthase activity, callose quantification and deposition. Plant Physiol Biochem 44:242–247

    Article  PubMed  CAS  Google Scholar 

  • Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122:255–263

    Article  PubMed  CAS  Google Scholar 

  • Yu B et al (2002a) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci U S A 99:5732–5737

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2002b) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Ye ZH (2003) Unraveling the functions of glycosyltransferase family 47 in plants. Trends Plant Sci 8:565–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Lionel Larvol and Benoit Lennon, Msc Students, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Etienne Sado.

Additional information

This work was funded by a grant of the French ministry of research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table SupS1

(DOC 463 KB).

Table SupS2

(DOC 98.5 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sado, PE., Tessier, D., Vasseur, M. et al. Integrating genes and phenotype: a wheat–Arabidopsis–rice glycosyltransferase database for candidate gene analyses. Funct Integr Genomics 9, 43–58 (2009). https://doi.org/10.1007/s10142-008-0100-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0100-0

Keywords

Navigation