Skip to main content
Log in

Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The U6 promoter, a typical RNA polymerase III promoter, is widely used to transcribe small RNAs in vector-based siRNA systems. The RNAi efficiency is mainly dependent on the transcriptional activity of the U6 promoter. However, studies have found that U6 promoters isolated from some fishes do not work well in distantly related species. To isolate a U6 promoter with high transcriptional efficiency from fish, in this study, we cloned five U6 promoters in orange-spotted grouper, of which only the grouper U6-1 (GU6-1) promoter contains the OCT element in the distant region. Functional studies revealed that the GU6-1 promoter has high transcriptional ability, which could efficiently transcribe shRNA and result in target gene knockdown in vitro and in vivo. Subsequently, the deletion or mutation of the OCT motif resulted in a significant decrease in promoter transcriptional activity, demonstrating that the OCT element plays an important role in enhancing the grouper U6 promoter transcription. Moreover, the transcriptional activity of the GU6-1 promoter showed little species specificity. It not only works in the grouper but also possesses high transcriptional activity in the zebrafish. Knockdown of the mstn gene in zebrafish and grouper through shRNA driven by the GU6-1 promoter could promote fish growth, suggesting that the GU6-1 promoter can be used as a potential molecular tool in aquaculture practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data analyzed in this study are presented in this article and the supplementary information file. The raw data supporting the conclusion can be shared by request.

References

  • Ach RA, Weiner AM (1991) Cooperation between CCAAT and octamer motifs in the distal sequence element of the rat U3 small nucleolar RNA promoter. Nucleic Acids Res 19:4209–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amali AA, Lin CJ, Chen YH, Wang WL, Gong HY, Lee CY, Ko YL, Lu JK, Her GM, Chen TT, Wu JL (2004) Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev Dyn 229:847–856

    Article  CAS  PubMed  Google Scholar 

  • Boonanuntanasarn S, Panyim S, Yoshizaki G (2008) Characterization and organization of the U6 snRNA gene in zebrafish and usage of their promoters to express short hairpin RNA. Mar Genomics 1:115–121

    Article  PubMed  Google Scholar 

  • Chuang CK, Lee KH, Fan CT, Su YS (2009) Porcine type III RNA polymerase III promoters for short hairpin RNA expression. Anim Biotechnol 20:34–39

    Article  CAS  PubMed  Google Scholar 

  • Clarke BD, McColl KA, Ward AC, Doran TJ (2017) shRNAs targeting either the glycoprotein or polymerase genes inhibit viral haemorrhagic septicaemia virus replication in zebrafish ZF4 cells. Antiviral Res 141:124–132

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Zhang F (2015) Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 1239:197–217

    Article  CAS  PubMed  Google Scholar 

  • Cun D, Foged C, Yang M, Frøkjaer S, Nielsen HM (2010) Preparation and characterization of poly (DL-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm 390:70–75

    Article  CAS  PubMed  Google Scholar 

  • Dergai O, Hernandez N (2019) How to recruit the correct RNA polymerase? Lessons from snRNA genes. Trends Genet 35:457–469

    Article  CAS  PubMed  Google Scholar 

  • Domitrovich AM, Kunkel GR (2003) Multiple, dispersed human U6 small nuclear RNA genes with varied transcriptional efficiencies. Nucleic Acids Res 31:2344–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Aguirre S, Arancibia D, Escorza A, Bravo C, Andrés ME, Zamorano P, Martínez V (2019) Development of a bicistronic vector for the expression of a CRISPR/Cas9-mcherry system in fish cell lines. Cells 8:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Halbig KM, Lekven AC, Kunkel GR (2008) Zebrafish U6 small nuclear RNA gene promoters contain a SPH element in an unusual location. Gene 421:89–94

    Article  CAS  PubMed  Google Scholar 

  • Hamar J, Kültz D (2021) An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Sci Rep 11:7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawdekar GW, Henry RW (2008) Transcriptional regulation of human small nuclear RNA genes. Biochim Biophys Acta 1779:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340–344

    Article  CAS  PubMed  Google Scholar 

  • Kim NY, Baek JY, Choi HS, Chung IS, Shin S, Lee JI, Choi JY, Yang JM (2012) Short-hairpin RNA-mediated gene expression interference in Trichoplusia ni cells. J Microbiol Biotechnol 22:190–198

    Article  CAS  PubMed  Google Scholar 

  • Kunkel GR, Cheung TC, Miyake JH, Urso O, McNamara-Schroeder KJ, Stumph WE (1996) Identification of a SPH element in the distal region of a human U6 small nuclear RNA gene promoter and characterization of the SPH binding factor in HeLa cell extracts. Gene Expr 6:59–72

    CAS  PubMed  Google Scholar 

  • Kunkel GR, Hixson JD (1998) The distal elements, OCT and SPH, stimulate the formation of preinitiation complexes on a human U6 snRNA gene promoter in vitro. Nucleic Acids Res 26:1536–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambeth LS, Wise TG, Moore RJ, Muralitharan MS, Doran TJ (2006) Comparison of bovine RNA polymerase III promoters for short hairpin RNA expression. Anim Genet 37:369–372

    Article  CAS  PubMed  Google Scholar 

  • Lin BR, Natarajan V (2012) Negative regulation of human U6 snRNA promoter by p38 kinase through Oct-1. Gene 497:200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Yang J, Chen J, Gunaseker A, Fesik SW, Shen Y (2004) Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett 577:376–380

    Article  CAS  PubMed  Google Scholar 

  • Mazan S, Bachellerie JP (1988) Structure and organization of mouse U3B RNA functional genes. J Biol Chem 263:19461–19467

    Article  CAS  PubMed  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene “knockdown” in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry HD, Scherly D, Mattaj IW (1989) Snurpogenesis: the transcription and assembly of U snRNP components. Trends Biochem Sci 14:15–19

    Article  CAS  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei DS, Sun YH, Long Y, Zhu ZY (2008) Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique. Mol Biol Rep 35:139–143

    Article  CAS  PubMed  Google Scholar 

  • Schaub M, Myslinsk E, Schuster C, Krol A, Carbon P (1997) Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J 16:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    Article  CAS  PubMed  Google Scholar 

  • Snøve OJ, Rossi JJ (2006) Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol 7:1–5

    Article  Google Scholar 

  • Stroke IL, Weiner AM (1985) Genes and pseudogenes for rat U3A and U3B small nuclear RNA. J Mol Biol 184:183–193

    Article  CAS  PubMed  Google Scholar 

  • Sui G, Soohoo C, Affar elB, Gay F, Shi Y, Forrester WC, Shi Y, (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumoy L, Keasey JB, Dittman TD, Kimelman D (1997) A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev 63:15–27

    Article  CAS  PubMed  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  PubMed Central  Google Scholar 

  • Vidigal JA, Ventura A (2015) Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat Commun 17:8083

    Article  Google Scholar 

  • Wang N, Sun YH, Liu J, Wu G, Su JG, Wang YP, Zhu ZZ (2007) Knock down of gfp and no tail expression in zebrafish embryo by in vivo-transcribed short hairpin RNA with T7 plasmid system. J Biomed Sci 14:767–776

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Shi Z, Liu W, Jules J, Feng X (2006) Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing. BMC Biotechnol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Wargelius A, Ellingsen S, Fjose A (1999) Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun 263:156–161

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Yan FY, Xiao XX, Tang L, Song YK, Han C, Wang CW, Zhang J, Lin HR, Huang CR, He JR, Zhang Y, Li SS (2022) Molecular cloning, expression patterns and functional characterization of Gpr3 in the orange-spotted grouper (Epinephelus coioides). Aquaculture Reports 23:101050

    Article  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenke K, Kim KH (2008) Novel fugu U6 promoter driven shRNA expression vector for efficient vector-based RNAi in fish cell lines. Biochem Biophys Res Commun 371:480–483

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Guangdong Provincial Key R&D Program (2021B0202020002), Science and Technology Planning Project of Guangzhou (202201011818), National Science Foundation of China (Nos. 32172968, 31972769, 32102788), Seed Industry Development Project of Agricultural and Rural Department of Guangdong Province (2022-SPY-00-012), the open project program of Yazhou Bay Innovation Institute of Hainan Tropical Ocean University (2022EHDKFXT05), and Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021006).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study (XX, SL, FY, YZ). Acquisition, analysis, and interpretation of data (FY, XX, CL, LT, WC, MZ, JZ, HH, SL). Writing the manuscript (FY, SL). All authors read and approved of the final article to be submitted.

Corresponding authors

Correspondence to Yong Zhang or Shuisheng Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Xiao, X., Long, C. et al. Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology. Mar Biotechnol 25, 388–402 (2023). https://doi.org/10.1007/s10126-023-10212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10212-9

Keywords

Navigation