Skip to main content

Advertisement

Log in

Cloning, characterization, and transcriptional activity of β-actin promoter of African catfish (Clarias gariepinus)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Selection of suitable promoters is crucial for the efficient expression of exogenous genes in transgenic animals. Although one of the most effective promoters, the β-actin promoter, has been widely studied in fish species, it still remains unknown in the economical important African catfish (Clarias gariepinus). In this study, the β-actin promoter of African catfish (cgβ-actinP) was cloned and characterized. In addition, recombinant plasmid pcgβ-actinP-EGFP with enhanced green fluorescent protein (GFP) gene as the reporter gene was constructed to verify the transcriptional activity. We obtained a cgβ-actinP fragment length of 1405 bp, consisting 104 bp of the 5′ proximal promoter, 96 bp of the first exon, and 1205 bp of the first intron. Similar to those of other fish species, cgβ-actinP contains three key transcription regulatory elements (CAAT box, CArG motif, and TATA box). GFP-specific fluorescent signals were detected in chicken embryonic fibroblasts cells (DF-1 cells) transfected with pcgβ-actinP-EGFP, which was approximately 1.11 times of the positive control. In addition, GFP was effectively expressed in zebrafish larvae microinjected with linearized cgβ-actinP-EGFP, with expression rate reaching approximately 49.84%. Our data indicate that cgβ-actinP could be a potential candidate promoter in the practice of constructing “all fish” transgenic fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article. Additional data and/or material related to this paper may be requested from the authors.

Abbreviations

cgβ-actinP :

African catfish (Clarias gariepinus) β-actin promoter

GFP:

Green fluorescent protein

FAO:

Food and agriculture organization of the United Nations

CDS:

Coding sequences

ZFIN:

Zebrafish information network

WT:

Wild type

DF-1 cells:

Chicken embryonic fibroblasts cells

CMV:

Cytomegalovirus

References

  1. Chen J, Luo Q, Bao H, Liao L, Li Y, Zhu Z, Wang Y, Hu W (2015) The integration characteristics of the exogenous growth hormone gene in a transgenic common carp (Cyprinus carpio L.) with fast-growth performance. Sci Bull 60:1654–1660. https://doi.org/10.1007/s11434-015-0893-x

    Article  CAS  Google Scholar 

  2. Kurdianto A, Faridah N, Yoshizaki G, Nuryati S, Setiawati M (2016) Growth, survival, and body composition of transgenic common carp Cyprinus carpio 3rd generation expressing tilapia growth hormone cDNA. HAYATI J Biosci 23:150–154. https://doi.org/10.1016/j.hjb.2016.12.002

    Article  Google Scholar 

  3. Luo L, Huang R, Zhang A, Yang C, Chen L, Zhu D, Li Y, He L, Liao L, Zhu Z, Wang Y (2018) Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L. Funct Integr Genomic 18:425–437. https://doi.org/10.1007/s10142-018-0597-9

    Article  CAS  Google Scholar 

  4. Pan C, Peng K, Lin C, Chen J (2011) Transgenic expression of tilapia hepcidin 1–5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish Shellfish Immunol 31:275–285. https://doi.org/10.1016/j.fsi.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  5. Nam Y, Noh J, Cho Y, Cho H, Cho K, Kim C, Kim D (2001) Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res 10:353–362. https://doi.org/10.1023/A:1016696104185

    Article  CAS  PubMed  Google Scholar 

  6. Li B, Li S, He Q, Du S (2020) Generation of MuRF-GFP transgenic zebrafish models for investigating murf gene expression and protein localization in Smyd1b and Hsp90α1 knockdown embryos. Comp Biochem Physiol 240:110368. https://doi.org/10.1016/j.cbpb.2019.110368

    Article  CAS  Google Scholar 

  7. Vimalraj S, Pichu S, Pankajam T, Dharanibalan K, Djonov V, Chatterjee S (2019) Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 82:48–58. https://doi.org/10.1016/j.niox.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Lau ES, Zhang Z, Qin M, Ge W (2016) Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6:1–14. https://doi.org/10.1038/srep37357

    Article  CAS  Google Scholar 

  9. Thresher R, Grewe P, Patil JG, Whyard S, Templeton CM, Chaimongol A, Hardy CM, Hinds LA, Dunham R (2009) Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture 290:104–109. https://doi.org/10.1016/j.aquaculture.2009.02.025

    Article  Google Scholar 

  10. Wong AC, Van Eenennaam AL (2008) Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture 275:1–12. https://doi.org/10.1016/j.aquaculture.2007.12.026

    Article  Google Scholar 

  11. Kawahara A, Hisano Y, Ota S, Taimatsu K (2016) Site-specific integration of exogenous genes using genome editing technologies in zebrafish. Int J Mol Sci 17:727. https://doi.org/10.3390/ijms17050727

    Article  CAS  PubMed Central  Google Scholar 

  12. Morita H, Taimatsu K, Yanagi K, Kawahara A (2017) Exogenous gene integration mediated by genome editing technologies in zebrafish. Bioengineered 8:287–295. https://doi.org/10.1080/21655979.2017.1300727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibnu Dwi B, Junianto J, Iskandar I, Alimuddin A (2019) Growth and expression level of growth hormone in transgenic mutiara catfish second generation. J Biotech Res 10:102–109

    Google Scholar 

  14. Hwang G, Azizur Rahman M, Abdul Razak S, Sohm F, Farahmand H, Smith A, Brooks C, Maclean N (2003) Isolation and characterisation of tilapia β-actin promoter and comparison of its activity with carp β-actin promoter. Biochimica Biophysica Acta 1625:11–18. https://doi.org/10.1016/S0167-4781(02)00534-1

    Article  CAS  Google Scholar 

  15. Biberman Y, Meyuhas O (1997) Substitution of just five nucleotides at and around the transcription start site of rat β-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett 405:333–336. https://doi.org/10.1016/S0014-5793(97)00234-2

    Article  CAS  PubMed  Google Scholar 

  16. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes. Nature 300:611–615

    Article  CAS  Google Scholar 

  17. Nam Y, Maclean N, Hwang G, Kim D (2008) Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review. J Fish Biol 72:1–26. https://doi.org/10.1111/j.1095-8649.2007.01738.x

    Article  CAS  Google Scholar 

  18. Samsul Alam M, Louise Lavender F, Iyengar A, Azizur Rahman M, Ayad HH, Lathe R, Morley SD, Maclean N (1996) Comparison of the activity of carp and rat β-actin gene regulatory sequences in tilapia and rainbow trout embryos. Mol Reprod Dev 45:117–122. https://doi.org/10.1002/(SICI)1098-2795(199610)45:2%3c117::AID-MRD2%3e3.0.CO;2-W

    Article  Google Scholar 

  19. Ledford H (2015) Transgenic salmon leaps to the dinner table. Nature 527:417–418

    Article  CAS  Google Scholar 

  20. Maclean N, Laight RJ (2000) Transgenic fish: an evaluation of benefits and risks. Fish Fish 1:146–172. https://doi.org/10.1046/j.1467-2979.2000.00014.x

    Article  Google Scholar 

  21. Sapkota A, Sapkota AR, Kucharski M, Burke J, McKenzie S, Walker P, Lawrence R (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34:1215–1226. https://doi.org/10.1016/j.envint.2008.04.009

    Article  PubMed  Google Scholar 

  22. Cook JT, McNiven MA, Richardson GF, Sutterlin AM (2000) Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:15–32. https://doi.org/10.1016/S0044-8486(00)00331-8

    Article  Google Scholar 

  23. Du SJ, Gong Z, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an all-fish chimeric growth hormone gene construct. Nat Biotechnol 10:176–181. https://doi.org/10.1038/nbt0292-176

    Article  CAS  Google Scholar 

  24. Guan B, Hu W, Zhang T, Wang Y, Zhu Z (2008) Metabolism traits of ‘all-fish’ growth hormone transgenic common carp (Cyprinus carpio L.). Aquaculture 284:217–223. https://doi.org/10.1016/j.aquaculture.2008.06.028

    Article  CAS  Google Scholar 

  25. Rahman MA, Mak R, Ayad H, Smith A, Maclean N (1998) Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–369. https://doi.org/10.1023/A:1008837105299

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Moav B, Faras AJ, Guise KS, Kapuscinski AR, Hackett PB (1990) Functional analysis of elements affecting expression of the beta-actin gene of carp. Mol Cell Biol 10:3432–3440. https://doi.org/10.1128/mcb.10.7.3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moav B, Hinits Y, Groll Y, Rothbard S (1995) Inheritance of recombinant carp β-actin/GH cDNA gene in transgenic carp. Aquaculture 137:179–185. https://doi.org/10.1016/0044-8486(95)01093-9

    Article  CAS  Google Scholar 

  28. Liu Z, Zhu Z, Roberg K, Faras AJ, Guise KS, Kapuscinski AR, Hackett PB (1989) The beta-actin gene of carp (Ctenopharyngodon idella). Nucleic Acids Res 17:5850. https://doi.org/10.1093/nar/17.14.5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng H, Cheng J, Luo J, Liu S, Liu Y (2006) Cloning of black carp β-actin gene and primarily detecting the function of its promoter region. Acta Genet Sin 33:133–140. https://doi.org/10.1016/S0379-4172(06)60032-2

    Article  CAS  PubMed  Google Scholar 

  30. Nam Y, Cho H, Cho Y, Noh J, Kim C, Kim D (2001) Accelerated growth, gigantism and likely sterility in autotransgenic triploid mud loach Misgurnus mizolepis. J World Aquacult Soc 32:353–363. https://doi.org/10.1111/j.1749-7345.2001.tb00461.x

    Article  Google Scholar 

  31. Noh J, Cho K, Han E, Kim A, Lee J, Kim D, Kim C (2003) Genomic cloning of mud loach Misgurnus mizolepis (Cypriniformes, Cobitidae) β-actin gene and usefulness of its promoter region for fish transgenesis. Mar Biotechnol 5:244–252. https://doi.org/10.1007/s10126-002-0066-1

    Article  CAS  Google Scholar 

  32. Ge J, Dong Z, Li J, Xu Z, Song W, Bao J, Liang D, Li J, Li K, Jia W, Zhao M, Cai Y, Yang J, Pan J, Zhao Q (2012) Isolation of yellow catfish β-actin promoter and generation of transgenic yellow catfish expressing enhanced yellow fluorescent protein. Transgenic Res 21(5):995–1004. https://doi.org/10.1007/s11248-012-9606-2

    Article  CAS  PubMed  Google Scholar 

  33. Wang M, Yang H, Zhong Q, Lai M, Fan H (2013) Isolation of Nile tilapia (Oreochromis niloticus) β-actin promoter and assay of its transcription activity. J Northeast Agric Univ 20:64–71. https://doi.org/10.1016/S1006-8104(14)60049-0

    Article  CAS  Google Scholar 

  34. Xiao X, Li M, Wang K, Qin Q, Chen X (2011) Characterization of large yellow croaker (Pseudosciaena crocea) β-actin promoter supports β-actin gene as an internal control for gene expression modulation and its potential application in transgenic studies in fish. Fish Shellfish Immunol 30:1072–1079. https://doi.org/10.1016/j.fsi.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  35. Cornejo I, Sepúlveda F, Kibenge F, Young J (2010) Isolation of the Atlantic salmon β-actin promoter and its use to drive expression in salmon cells in culture and in transgenic zebrafish. Aquaculture 309:75–81. https://doi.org/10.1016/j.aquaculture.2010.09.002

    Article  CAS  Google Scholar 

  36. Inoue T, Iida A, Maegawa S, Sehara-Fujisawa A, Kinoshita M (2016) Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages. Dev Growth Differ 58:679–687. https://doi.org/10.1111/dgd.12324

    Article  CAS  PubMed  Google Scholar 

  37. Kinoshita M, Yamauchi M, Sasanuma M, Ishikawa Y, Osada T, Inoue K, Wakamatsu Y, Ozato K (2003) A transgene and its expression profile are stably transmitted to offspring in transgenic medaka generated by the particle gun method. Zool Sci 20:869–875. https://doi.org/10.2108/zsj.20.869

    Article  CAS  Google Scholar 

  38. Yu E, Ye X, Wang H, Bai J, Xia S, Lao H, Jian Q (2010) Isolation of Tanichthys albonubes β actin gene and production of transgenic Tanichthys albonubes. Fish Physiol Biochem 36:173–180. https://doi.org/10.1007/s10695-008-9238-x

    Article  CAS  PubMed  Google Scholar 

  39. Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289–299. https://doi.org/10.1006/dbio.1997.8779

    Article  CAS  PubMed  Google Scholar 

  40. Harikrishnan R, Devi G, Paray BA, Al-Sadoon MK, Al-Mfarij AR, Van Doan H (2020) Effect of cassic acid on immunity and immune-reproductive genes transcription in Clarias gariepinus against Edwardsiella tarda. Fish Shellfish Immunol 99:331–341. https://doi.org/10.1016/j.fsi.2020.02.037

    Article  CAS  PubMed  Google Scholar 

  41. Limbu SM (2020) The effects of on-farm produced feeds on growth, survival, yield and feed cost of juvenile African sharptooth catfish (Clarias gariepinus). Aquacult Fish 5:58–64. https://doi.org/10.1016/j.aaf.2019.07.002

    Article  Google Scholar 

  42. Ma Z, Zhu P, Pang M, Guo L, Chang N, Zheng J, Zhu X, Gao C, Huang H, Cui Z, Xiong J, Peng J, Chen J (2017) A novel inducible mutagenesis screen enables to isolate and clone both embryonic and adult zebrafish mutants. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-10968-w

    Article  CAS  Google Scholar 

  43. Yao L, Jiang Y, Li Q, Sui Z, Wang L, Zhai Y (2016) A comparison of eight methods for DNA etraction from processed seafood products. Food Sci Technol Res 22:751–757. https://doi.org/10.3136/fstr.22.751

    Article  CAS  Google Scholar 

  44. Chen Y, Huang Z, Wang B, Yu Q, Liu R, Xu Q, Chang G, Ding J, Chen G (2015) Duck RIG-I CARD domain induces the chicken IFN-β by activating NF-κB. Biomed Res Int 2015:1–6. https://doi.org/10.1155/2015/348792

    Article  CAS  Google Scholar 

  45. Zha S, Rong J, Guan X, Tang Y, Han Y, Liu G (2019) Immunotoxicity of four nanoparticles to a marine bivalve species, Tegillarca granosa. J Hazard Mater 377:237–248. https://doi.org/10.1016/j.jhazmat.2019.05.071

    Article  CAS  PubMed  Google Scholar 

  46. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:e1115. https://doi.org/10.3791/1115

    Article  Google Scholar 

  47. Tu H, Fan C, Chen X, Liu J, Wang B, Huang Z, Zhang Y, Meng X, Zou F (2017) Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish. Environ Toxicol Chem 36:2147–2154. https://doi.org/10.1002/etc.3748

    Article  CAS  PubMed  Google Scholar 

  48. Kawamoto T, Makino K, Orita S, Nakata A, Kakunaga T (1989) DNA bending and binding factors of the human β-actin promoter. Nucleic Acids Res 17:523–537. https://doi.org/10.1093/nar/17.2.523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng S, Gunning P, Liu S, Leavitt J, Kedes L (1989) Regulation of the human β-actin promoter by upstream and intron domains. Nucleic Acids Res 17:601–615. https://doi.org/10.1093/nar/17.2.601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Danilition SL, Frederickson RM, Taylor CY, Miyamoto NG (1991) Transcription factor binding and spacing constraints in the human β-actin proximal promoter. Nucleic Acids Res 19:6913–6922. https://doi.org/10.1093/nar/19.24.6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rahman MA, Hwang G, Razak SA, Sohm F, Maclean N (2000) Copy number related transgene expression and mosaic somatic expression in hemizygous and homozygous transgenic tilapia (Oreochromis niloticus). Transgenic Res 9:417–427. https://doi.org/10.1023/A:1026517212807

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financial supported by National Key R&D Program of China (No. 2018YFD0900603), the Open Project of Key Laboratory of Environmental Biotechnology, CAS (kf2018005), and the Science and Technology Project of Wenzhou (2019ZX002-02).

Author information

Authors and Affiliations

Authors

Contributions

SR: Conceptualization, investigation, methodology, writing-original draft. WH: Data curation, investigation. SR: Data curation, investigation. WS: Data curation. YH: Formal analysis, investigation. YT: Formal analysis, investigation. LZ: Formal analysis, investigation. MY: Conceptualization, project administration, supervision, funding acquisition. GL: Conceptualization, project administration, supervision, funding acquisition.

Corresponding author

Correspondence to Guangxu Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Ethics code permit No. ZJU2015-516-15, issued by the Animal Ethics Committee in the School of Medicine, Zhejiang University.

Consent for participate

All authors have materially participated in the research and manuscript preparation.

Consent for publication

Consent for publication submission is approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, S., Hwang, W., Ri, S. et al. Cloning, characterization, and transcriptional activity of β-actin promoter of African catfish (Clarias gariepinus). Mol Biol Rep 48, 2561–2571 (2021). https://doi.org/10.1007/s11033-021-06306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06306-z

Keywords

Navigation