Skip to main content

Advertisement

Log in

Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products

  • Review Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Many industrially significant compounds have been derived from natural products in the environment. Research efforts so far have contributed to the discovery of beneficial natural products that have improved the quality of life on Earth. As one of the sources of natural products, marine sponges have been progressively recognised as microbial hotspots with reports of the sponges harbouring diverse microbial assemblages, genetic material, and metabolites with multiple industrial applications. Therefore, this paper aims at reviewing the recent literature (primarily published between 2016 and 2022) on the types and functions of natural products synthesised by sponge-associated microorganisms, thereby helping to bridge the gap between research and industrial applications. The metabolites that have been derived from sponge-associated microorganisms, mostly bacteria, fungi, and algae, have shown application prospects especially in medicine, cosmeceutical, environmental protection, and manufacturing industries. Sponge bacteria-derived natural products with medical properties harboured anticancer, antibacterial, antifungal, and antiviral functions. Efforts in re-identifying the origin of known and future sponge-sourced natural products would further clarify the roles and significance of microbes within marine sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El-Hady FK, Fayad W, Iodice C et al (2017) Investigating on the correlation between some biological activities of marine sponge-associated bacteria extracts and isolated diketopiperazines. Curr Microbiol 74:6–13

    Article  CAS  PubMed  Google Scholar 

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    Article  CAS  PubMed  Google Scholar 

  • Agarwal V, Blanton JM, Podell S et al (2017) Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 13:537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal V, Li J, Rahman I et al (2015) Complexity of naturally produced polybrominated diphenyl ethers revealed via mass spectrometry. Environ Sci Technol 49:1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida EL, Kaur N, Jennings LK et al (2019a) Genome mining coupled with OSMAC-based cultivation reveal differential production of surugamide a by the marine sponge isolate Streptomyces sp. sm17 when compared to its terrestrial relative S. albidoflavus J1074. Microorganisms 7:394

  • Almeida EL, Margassery LM, Kennedy J, Dobson ADW (2018) Draft genome sequence of the antimycin-producing bacterium Streptomyces sp. strain SM8, isolated from the marine sponge Haliclona simulans. Genome Announc 6:e01535-e1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida EL, Rincón AFC, Jackson SA, Dobson ADW (2019b) Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol 10:1713

  • Amelia TSM, Amirul AA, Bhubalan K (2018) Data on partial polyhydroxyalkanoate synthase genes (phaC) mined from Aaptos aaptos marine sponge-associated bacteria metagenome. Data in Brief 16:75–80

    Article  PubMed  Google Scholar 

  • Amelia TSM, Lau NS, Amirul AA, Bhubalan K (2020) Metagenomic data on bacterial diversity profiling of high-microbial-abundance tropical marine sponges Aaptos aaptos and Xestospongia muta from waters off Terengganu, South China Sea. Data Brief 31:105971

  • Amelia TSM, Govindasamy S, Tamothran AM, Vigneswari S, Bhubalan K (2019) Applications of PHA in Agriculture. In: Biotechnological Applications of Polyhydroxyalkanoates. pp 347–361

  • Aminah I, Putra AE, Arbain D, Handayani D (2019) Screening of cytotoxic activities toward WiDr and Vero cell lines of ethyl acetate extracts of fungi-derived from the marine sponge Acanthostrongylophora ingens. J Appl Pharm Sci 9:1–5

    Article  CAS  Google Scholar 

  • Andjouh S, Blache Y (2016) Screening of bromotyramine analogues as antifouling compounds against marine bacteria. Biofouling 32:871–881

    Article  CAS  PubMed  Google Scholar 

  • Anteneh YS, Brown MH, Franco CMM (2019) Characterization of a halotolerant fungus from a marine sponge. Biomed Res Int 2019:3456164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anteneh YS, Yang Q, Brown MH, Franco CMM (2021) Antimicrobial activities of marine sponge-associated bacteria. Microorganisms 9:1–19

    Article  CAS  Google Scholar 

  • Anteneh YS, Yang Q, Brown MH, Franco CMM (2022) Factors affecting the isolation and diversity of marine sponge-associated bacteria. Appl Microbiol Biotechnol 106:1729–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discovery 20:200–216

    Article  CAS  PubMed  Google Scholar 

  • Austin HP, Allen MD, Donohoe BS et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 115:E4350–E4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Dong M, Lai T, Zhang H (2018) Antimicrobial evaluation of the crude extract of symbiotic fungi from marine sponge Reniera japonica. Bangladesh J Pharmacol 13:53–56

    Article  Google Scholar 

  • Banakar SP, Karthik L, Li Z (2019) Mass production of natural products from microbes derived from sponges and corals. In: Symbiotic Microbiomes of Coral Reefs Sponges and Corals 505–526

  • Bandaranayake WM, Bemis JE, Bourne DJ (1996) Ultraviolet absorbing pigments from the marine sponge Dysidea herbacea: isolation and structure of a new mycosporine. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 115:281–286

    Google Scholar 

  • Bart MC, de Kluijver A, Hoetjes S et al (2020) Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  • Bastos JCS, Kohn LK, Fantinatti-Garboggini F et al (2013) Antiviral activity of Bacillus sp. isolated from the marine sponge Petromica citrina against bovine viral diarrhea virus, a surrogate model of the Hepatitis C virus. Viruses 5:1219

  • Bertin MJ, Schwartz SL, Lee J et al (2015) Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta. J Nat Prod 78:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birolli WG, Alvarenga N, Seleghim MHR, Porto ALM (2016) Biodegradation of the pyrethroid pesticide esfenvalerate by marine-derived fungi. Mar Biotechnol 18:511–520

    Article  CAS  Google Scholar 

  • Birolli WG, Vacondio B, Alvarenga N et al (2018) Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere 197:651–660

    Article  CAS  PubMed  Google Scholar 

  • Björk JR, Díez-Vives C, Astudillo-García C et al (2019) Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol 3:1172–1183

    Article  PubMed  PubMed Central  Google Scholar 

  • Bo ST, Xu ZF, Yang L et al (2018) Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454. J Antibiot 71:601–605

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

  • Bose U, Hewavitharana AK, Ng YK et al (2015) LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar Drugs 13:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botting JP, Nettersheim BJ (2018) Searching for sponge origins. Nat Ecol Evol 2:1685–1686

    Article  PubMed  Google Scholar 

  • Bovio E, Fauchon M, Toueix Y et al (2019) The sponge-associated fungus Eurotium chevalieri MUT 2316 and its bioactive molecules: potential applications in the field of antifouling. Mar Biotechnol 21:743–752

    Article  CAS  Google Scholar 

  • Braun GH, Ramos HP, Candido ACBB et al (2019) Evaluation of antileishmanial activity of harzialactone a isolated from the marine-derived fungus Paecilomyces sp. Nat Prod Res 35:1644–1647

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann CM, Marker A, Kurtböke Dİ (2017) An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9:40

    Article  CAS  Google Scholar 

  • Buijs Y, Isbrandt T, Zhang SD et al (2020) The antibiotic andrimid produced by Vibrio coralliilyticus increases expression of biosynthetic gene clusters and antibiotic production in Photobacterium galatheae. Front Microbiol 11:3276

    Article  Google Scholar 

  • Busch K, Beazley L, Kenchington E, Whoriskey F, Slaby BM, Hentschel U (2020) Microbial diversity of the glass sponge Vazella pourtalesii in response to anthropogenic activities. Conserv Genet 21:1001–1010

    Article  CAS  Google Scholar 

  • Cao MJ, Zhu T, Liu JT et al (2019) New sorbicillinoid derivatives with GLP-1R and eEF2K affinities from a sponge-derived fungus Penicillium chrysogenum 581F1. Nat Prod Res 34:2880–2886

    Article  PubMed  CAS  Google Scholar 

  • Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Marine Drugs 9:387–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano S, Scarascia G, Russo MG, Briassoulis D, Mistrotis A, Hemming S, Waaijenberg D (2008) Design and Use Criteria of Netting Systems for Agricultural Production in Italy. J Agric Eng 39:31-42

    Article  Google Scholar 

  • Chen F, Mackey AJ, Stoeckert CJ, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368

    Article  CAS  PubMed  Google Scholar 

  • Chiarello M, Auguet JC, Graham NAJ et al (2020) Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc R Soc B 287:20200642

    Article  PubMed  PubMed Central  Google Scholar 

  • ClinicalTrials (2021) Glossary of common site terms. National Library of Medicine (U.S.). https://clinicaltrials.gov/ct2/about-studies/glossary. Accessed on 9 Apr 2022

  • Conaco C, Tsoulfas P, Sakarya O et al (2016) Detection of prokaryotic genes in the Amphimedon queenslandica genome. PLoS One 11

  • Contador CA, Rodríguez V, Andrews BA, Asenjo JA (2019) Use of genome-scale models to get new insights into the marine actinomycete genus Salinispora. BMC Syst Biol 13:1–14

    Article  CAS  Google Scholar 

  • Cooper EL, Yao D (2012) Diving for drugs: tunicate anticancer compounds. Drug Discov Today 17:636–648

    Article  CAS  PubMed  Google Scholar 

  • Coyne VE (2015) Proteomics: applications and advances. In: Springer Handbook of Marine Biotechnology 18:475–495

  • Croué J, West NJ, Escande ML, Intertaglia L, Lebaron P, Suzuki MT (2013) A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep 3:2583

  • Cuvelier ML, Blake E, Mulheron R et al (2014) Two distinct microbial communities revealed in the sponge Cinachyrella. Front Microbiol 5:581

  • Dicioccio RA, Srivastava BI (1977) Kinetics of inhibition of deoxynucleotide-polymerizing enzyme activities from normal and leukemic human cells by 9-beta-D-arabinofuranosyladenine 5’-triphosphate and 1-beta-D-arabinofuranosylcytosine 5’-triphosphate. Eur J Biochem 79:411–418

    Article  CAS  PubMed  Google Scholar 

  • Dobson ADW, Jackson SA, Kennedy J et al (2015) Marine sponges – molecular biology and biotechnology. In: Springer Handbook of Marine Biotechnology. pp 219–254

  • Doesburg W, Eekert MHA, Middeldorp PJM et al (2005) Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54:87–95

    Article  PubMed  CAS  Google Scholar 

  • Du J, Huang YP, Xi J et al (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunshee BR, Leben C, Keitt GW, Strong FM (1949) The isolation and properties of antimycin A. J Am Chem Soc 71:2436–2437

    Article  CAS  Google Scholar 

  • El-Gendy MMAA, Yahya SMM, Hamed AR et al (2018) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from red sea sponge Hyrtios erectus. Appl Biochem Biotechnol 185:755–777

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Pawlik JR (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207:273–281

    Article  Google Scholar 

  • Esposito R, Ruocco N, Viel T et al (2021) Sponges and their symbionts as a source of valuable compounds in cosmeceutical field. Mar Drugs 19:444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42:355–357

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Sun W, Zhang F et al (2016) Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep 6:1–11

    CAS  Google Scholar 

  • Foong CP, Lakshmanan M, Abe H et al (2017) A novel and wide substrate specific polyhydroxyalkanoate (PHA) synthase from unculturable bacteria found in mangrove soil. J Polym Res 25:23

    Article  CAS  Google Scholar 

  • Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D, Ziegelbauer K (2004) Identification and characterization of the first class of potent bacterial acetyl-COA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073

    Article  CAS  PubMed  Google Scholar 

  • Gatto F, Re I (2021) Circular bioeconomy business models to overcome the valley of death. A systematic statistical analysis of studies and projects in emerging bio-based technologies and trends linked to the SME Instrument Support. Sustainability 13:1899

  • Geraldes V, Pinto E (2021) Mycosporine-like amino acids (MAAs): biology, chemistry and identification features. Pharmaceuticals 14:1–17

    Article  CAS  Google Scholar 

  • Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginting EL, Poluan GL, Wantani L et al (2021) Screening and identification of sponge-associated chitinolytic bacteria by forming chitosan from Manado Bay, Indonesia. Pak J Biol Sci 24:227–234

    Article  CAS  Google Scholar 

  • Glasl B, Smith CE, Bourne DG, Webster NS (2018) Exploring the diversity-stability paradigm using sponge microbial communities. Sci Rep 8:8425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gnann JJW (2007) Antiviral therapy of varicella-zoster virus infections. Biology, Therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge, Human Herpesviruses

    Book  Google Scholar 

  • Gold DA, Grabenstatter J, Mendoza A et al (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. Proc Natl Acad Sci USA 113:2684–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozari M, Bahador N, Mortazavi MS et al (2019) An “olivomycin A” derivative from a sponge-associated Streptomyces sp. strain SP 85. 3 Biotech 9:1–11

  • Greco G, di Piazza S, Gallus L et al (2019) First identification of a fatal fungal infection of the marine sponge Chondrosia reniformis by Aspergillus tubingensis. Dis Aquat Org 135:227–239

    Article  CAS  Google Scholar 

  • Groenhagen U, Oliveira ALLD, Fielding E et al (2016) Coupled biosynthesis of volatiles and Salinosporamide A in Salinispora tropica. Chembiochem 17:1978–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid THTA, Rosmadi A (2020) Pigmented Pseudoalteromonas sp. isolated from marine sponge with anti-microbial activities against selected human pathogens. Eur J Biol Biotechnol 1:1–5. https://doi.org/10.24018/EJBIO.2020.1.5.87

  • Hao Y, Pei Z, Brown SM (2017) Bioinformatics in microbiome analysis. Methods Microbiol 44:1–18

    Article  CAS  Google Scholar 

  • Harvey A (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  • Hassane CS, Fouillaud M, Le Goff G et al (2020) Microorganisms associated with the marine sponge Scopalina hapalia: a reservoir of bioactive molecules to slow down the aging process. Microorganisms 8:1262

  • Hausmann R, Vitello MP, Leitermann F, Syldatk C (2006) Advances in the production of sponge biomass Aplysina aerophoba-a model sponge for ex situ sponge biomass production. J Biotechnol 124:117–127

    Article  CAS  PubMed  Google Scholar 

  • He X, Ren L, Ding L et al (2019) Penichrypyrone A: a new γ-pyrone derivative from the sponge-derived fungus Penicillium chrysogenum LS18. Nat Prod Commun 14:1–4

  • Hentschel U, Fieseler L, Wehrl M et al (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37:59–88

    Article  CAS  PubMed  Google Scholar 

  • Hifnawy MS, Hassan HM, Mohammed R et al (2020) Induction of antibacterial metabolites by co-cultivation of two red-sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar Drugs 18:243

  • Ibrahim AH, Attia EZ, Hajjar D et al (2018) New cytotoxic cyclic peptide from the marine sponge-associated Nocardiopsis sp. UR67. Mar Drugs 16:290

  • Jaapar AN, Md Amin R, Bhubalan K, Sohaimi ES (2021) Changes in the development and reproductive output of Nitokra lacustris pacifica (Crustacea: Copepoda) Yeatman, 1983 under short and long term exposure to synthetic and biodegradable microbeads. J Polym Environ 29:4060–4072

    Article  CAS  Google Scholar 

  • Jaenicke S, Ander C, Bekel T et al (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 6:e14519

  • Jiao WH, Xu QH, Ge GB et al (2020) Flavipesides A-C, PKS-NRPS hybrids as pancreatic lipase inhibitors from a marine sponge symbiotic fungus Aspergillus flavipes 164013. Org Lett 22:1825–1829

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science (New York, NY) 296:1127–1129

    Article  CAS  Google Scholar 

  • Kalia VC (2019) Biotechnological Applications of Polyhydroxyalkanoates. Springer, Singapore

  • Kalinovskaya NI, Romanenko LA, Kalinovsky LA (2017) Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513 T. Antonie Van Leeuwenhoek 110:719–726

    Article  CAS  PubMed  Google Scholar 

  • Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    Article  CAS  PubMed  Google Scholar 

  • Karuppiah V, Li Z (2015) Marine sponge metagenomics. In: Springer Handbook of Marine Biotechnology. pp 457–473

  • Keffer JL, Plaza A, Bewley CA (2009) Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Org Lett 11:1087–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara T, Hiroe A, Ishii-Hyakutake M et al (2017) Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene. Biosci Biotechnol Biochem 81:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee JE, Kim KH, Kang NJ (2018) Beneficial effects of marine algae-derived carbohydrates for skin health. Mar Drugs 16:459

  • Kim M, Lee KH, Yoon SW et al (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11:102

  • Kiun JT, Amelia TSM, Huong KH, Amirul AA, Bhubalan K (2019) Optimizing the biosynthesis of renewable polyhydroxyalkanoate copolymer containing 3-hydroxyvalerate by Massilia haematophila using statistical modeling. Biotechnologia 100:359–371

    Article  CAS  Google Scholar 

  • Kogawa M, Miyaoka R, Hemmerling F, Ando M, Yura K, Ide K, Nishikawa Y, Hosokawa M, Ise Y, Cahn JKB, Takada K, Matsunaga S, Mori T, Piel J, Takeyama H (2022) Single-cell metabolite detection and genomics reveals uncultivated talented producer. PNAS Nexus 1:pgab007

  • Koller M (2019) Linking food industry to “green plastics” - polyhydroxyalkanoate (PHA) biopolyesters from agro-industrial by-products for securing food safety. Appl Food Biotechnol 6:1–6

  • Konstantinou D, Gerovasileiou V, Voultsiadou E, Gkelis S (2018) Sponges-Cyanobacteria associations: global diversity overview and new data from the Eastern Mediterranean. PLoS One 13:e0195001

  • Konstantinou D, Kakakiou RV, Panteris E et al (2020a) Photosynthetic sponge-associated eukaryotes in the aegean sea: a culture-dependent approach. J Eukaryot Microbiol 67:660–670

  • Konstantinou D, Mavrogonatou E, Zervou SK et al (2020b) Bioprospecting sponge-associated marine cyanobacteria to produce bioactive compounds. Toxins 12:73

  • Kubota T, Kurimoto S ichiro, Kobayashi J (2020) The manzamine alkaloids. Alkaloids Chem Biol 84:1–124

  • Kumar V, Remers WA, Bradner WT (1980) Preparation and antitumor activity of olivomycin A analogues. J Med Chem 23:376–379. PMID: 7381837

  • Lackner G, Peters EE, Helfrich EJN, Piel J (2017) Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci U S A 114:E347–E356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee OO, Tsoi MMY, Li X et al (2007) Thalassococcus halodurans gen. nov., sp. nov., a novel halotolerant member of the Roseobacter clade isolated from the marine sponge Halichondria panicea at Friday Harbor, USA. Int J Syst Evol Microbiol 57:1919–1924

    Article  PubMed  Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Bi X, Lin X et al (2021) Heterocornols from the sponge-derived fungus Pestalotiopsis heterocornis with anti-inflammatory activity. Mar Drugs 19:585

  • Lesk AM (2013) Bioinformatics. Encyclopaedia Britannica. http://www.britannica.com/science/bioinformatics. Accessed 12 Apr 2022

  • Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Ind Biotechnol 10:169–183

  • Leys SP, Yahel G, Reidenbach MA et al (2011) The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS One 6:e27787

  • Liu MY, Kjelleberg S, Thomas T (2011) Functional genomic analysis of an uncultured δ-proteobacterium in the sponge Cymbastela concentrica. ISME J 5:427

    Article  PubMed  Google Scholar 

  • Liu N, Peng S, Yang J et al (2019) Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sydowii SCSIO41301. Fitoterapia 135:27–32

    Article  CAS  PubMed  Google Scholar 

  • Loh TL, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci 111:4151–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loredana S, Graziano P, Antonio M et al (2017) Lindane bioremediation capability of bacteria associated with the demosponge Hymeniacidon perlevis. Mar Drugs 15:108

    Article  PubMed Central  CAS  Google Scholar 

  • Lurgi M, Thomas T, Wemheuer B et al (2019) Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 10:1–12

    Article  CAS  Google Scholar 

  • Ma L, Diao A (2015) Marizomib, a potent second generation proteasome inhibitor from natural origin. Anticancer Agents Med Chem 15:298–306

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M, Young CM (1998) Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Mar Ecol Prog Ser 174:123–139

    Article  Google Scholar 

  • Malhão F, Ramos AA, Buttachon S et al (2019) Cytotoxic and antiproliferative effects of preussin, a hydroxypyrrolidine derivative from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, in a panel of breast cancer cell lines and using 2D and 3D cultures. Mar Drugs 17:448

    Article  PubMed Central  CAS  Google Scholar 

  • Manco G, Porzio E, Suzumoto Y (2018) Enzymatic detoxification: a sustainable means of degrading toxic organophosphate pesticides and chemical warfare nerve agents. J Chem Technol Biotechnol 93:2064–2082

    Article  CAS  Google Scholar 

  • Mani C, Selvakumari J, Han Y et al (2017) Molecular characterization of mosquitocidal toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540. Appl Biochem Biotechnol 184:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Marco D (2011) Metagenomics : current innovations and future trends. Caister Academic Press, Poole, UK

  • Marino CM, Pawlik JR, López-Legentil S, Erwin PM (2017) Latitudinal variation in the microbiome of the sponge Ircinia campana correlates with host haplotype but not anti-predatory chemical defense. Mar Ecol Prog Ser 565:53–66

    Article  CAS  Google Scholar 

  • Marzuki I, Chaerul M, Erniati et al (2020) Biodegradation of aliphatic waste components of oil sludge used micro symbiont of Sponge Niphates sp. IOP Conf Ser Earth Environ Sci 429:012056

  • Marzuki I, Sinardi S, Pratama I et al (2021) Performance of sea sponges micro symbionts as a biomaterial in biodegradation naphthalene waste of modified. IOP Conf Ser Earth Environ Sci 737:012016

  • McCulloch MWB, Bugni TS, Concepcion GP et al (2009) Carteriosulfonic acids A-C, GSK-3β inhibitors from a Carteriospongia sp. J Nat Prod 72:1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena SS, Mohanty A (2020) Ethical, patent, and regulatory issues in microbial engineering. In: Singh V, Singh A, Bhargava P, Joshi M, Joshi C (eds) Engineering of microbial biosynthetic pathways. Springer, Singapore. https://doi.org/10.1007/978-981-15-2604-6_8

  • Moeller FU, Webster NS, Herbold CW et al (2019) Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 21:3831–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty I, Podell S, Biggs JS et al (2020) Multi-omic profiling of melophlus sponges reveals diverse metabolomic and microbiome architectures that are non-overlapping with ecological neighbors. Mar Drugs 18:124

    Article  CAS  PubMed Central  Google Scholar 

  • Mohanty I, Tapadar S, Moore SG et al (2021) Presence of bromotyrosine alkaloids in marine sponges is independent of metabolomic and microbiome architectures. Msystems 6:e01387–20

  • Morganti TM, Ribes M, Yahel G, Coma R (2019) Size is the major determinant of pumping rates in marine sponges. Front Physiol 10:1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima Y, Egami Y, Kimura M et al (2016) Metagenomic analysis of the sponge Discodermia reveals the production of the cyanobacterial natural product Kasumigamide by ‘Entotheonella.’ PLoS One 11:e0164468

  • Nalini S, Inbakandan D, Venkatnarayanan S et al (2019) PYRROLO isolated from marine sponge associated bacterium Halobacillus kuroshimensis SNSAB01 – antifouling study based on molecular docking, diatom adhesion and mussel byssal thread inhibition. Colloids Surf B 173:9–17

    Article  CAS  Google Scholar 

  • National Library of Medicine (US) (2016) Phase 1b, multicenter, open-label study of marizomib combined with temozolomide and radiotherapy in patients with newly diagnosed who grade iv malignant glioma. Identifier NCT02903069. https://www.clinicaltrials.gov/ct2/show/NCT02903069. Accessed on 12 Apr 2022

  • National Library of Medicine (US) (2020) Phase 1 trial of marizomib alone and in combination with panobinostat for children with diffuse intrinsic pontine glioma. Identifier NCT04341311. https://clinicaltrials.gov/ct2/show/NCT04341311. Accessed on 12 Apr 2022

  • Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

    Article  CAS  PubMed  Google Scholar 

  • Nursid M, Marraskuranto E, Septorini D, Batubara I (2019) Screening of marine-derived fungi extracts as antioxidant, tyrosinase inhibitor, and antiglycation. Squalen Bull Mar Fish Postharvest Biotechnol 14:33–42

    Article  Google Scholar 

  • Oclarit JM, Okada H, Ohta S, Kaminura K, Yamaoka Y, Iizuka T, Miyashiro S, Ikegami S (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:7–16

    CAS  PubMed  Google Scholar 

  • Oda Y, Zhang Q, Matsunaga S et al (2017) Two new mycosporine-like amino acids LC-343 and mycosporine-ethanolamine from the Micronesian marine sponge Lendenfeldia chondrodes. Chem Lett 46:1272–1274

    Article  Google Scholar 

  • Odekina PA, Agbo MO, Omeje EO (2020) Antimicrobial and antioxidant activities of novel marine bacteria (Bacillus 2011SOCCUF3) isolated from marine sponge (Spongia officinalis). Pharm Sci 26:82–87

  • Okamura Y, Takahashi H, Shiida A et al (2021) Screening of neutrophil activating factors from a metagenome library of sponge-associated bacteria. Mar Drugs 19:427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: applications for biotechnology. Trends Biotechnol 16:130–134

    Article  CAS  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Article  CAS  PubMed  Google Scholar 

  • Pita L, Fraune S, Hentschel U (2016) Emerging sponge models of animal-microbe symbioses. Front Microbiol 7:2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pita L, Rix L, Slaby BM et al (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:1–18

    Article  Google Scholar 

  • Poulose N, Sajayan A, Ravindran A, Sreechithra TV, Vardhan V, Selvin J, Kiran GS (2020) Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: with improved antioxidant and wound healing properties. J Photochem Photobiol B 205:111816

  • Prastya ME, Astuti RI, Batubara I et al (2019a) Chemical screening identifies an extract from marine Pseudomonas sp.-PTR-08 as an anti-aging agent that promotes fission yeast longevity by modulating the Pap1–ctt1+ pathway and the cell cycle. Mol Biol Rep 47:33–43

  • Prastya ME, Astuti RI, Batubara I, Wahyudi AT (2019b) Antioxidant, antiglycation and in vivo antiaging effects of metabolite extracts from marine sponge-associated bacteria. Indian J Pharm Sci 81:344–353

  • Qasem WMA, Mohamed EA, Hamed AA et al (2016) Antimicrobial and anticancer activity of some microalgae species. Egypt J Phycol 17:33–49

  • Radjasa OK, Sabdono A, Zocchi J, Zocchi E (2007) Richness of secondary metabolite-producing marine bacteria associated with sponge Haliclona sp. Int J Pharmacol 3:275–279

    Article  Google Scholar 

  • Raninga PV, Lee A, Sinha D et al (2020) Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics 10:5259

  • Rashid NFM, Amelia TSM, Amirul AAA, Bhubalan K (2021) Dual-production of polyhydroxyalkanoate and rhamnolipid by Pseudomonas aeruginosa UMTKB-5 using industrial by-products. Malaysian J Anal Sci 25:24–39

    Google Scholar 

  • Rashiya N, Padmini N, Ajilda AAK et al (2021) Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microb Pathog 150:104693

  • Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman SU, Wu J-S, Yang L-J et al (2020) One new terphenyl glycoside from a sponge-derived fungus Trichoderma reesei (HN-2016–018). Nat Prod Commun 15:1934578X20907753

  • Riyanti BW, Liu Y et al (2020) Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep 10:1–14

    Article  CAS  Google Scholar 

  • Rothstein DM (2016) Rifamycins, alone and in combination. Cold Spring Harb Perspect Med 6:a027011

  • Rotter A, Bacu A, Barbier M et al (2020) A new network for the advancement of marine biotechnology in Europe and beyond. Front Mar Sci 7:278. https://doi.org/10.3389/FMARS.2020.00278

  • Rubin-Blum M, Antony CP, Borowski C et al (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:1–11

  • Rubio BK, Tenney K, Ang KH et al (2009) The marine sponge Diacarnus bismarckensis as a source of peroxiterpene inhibitors of Trypanosoma brucei, the causative agent of sleeping sickness. J Nat Prod 72:218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajayan A, Kiran GS, Priyadharshini S et al (2017) Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ Pollut (Barking, Essex : 1987) 228:118–127

  • Santacruz-Juárez E, Buendia-Corona RE, Ramírez RE, Sánchez C (2021) Fungal enzymes for the degradation of polyethylene: molecular docking simulation and biodegradation pathway proposal. J Hazard Mater 411:125118

  • Santos JD, Vitorino I, de la Cruz M et al (2020) Diketopiperazines and other bioactive compounds from bacterial symbionts of marine sponges. Antonie Van Leeuwenhoek 113:875–887

    Article  CAS  PubMed  Google Scholar 

  • Santos JD, Vitorino I, la Cruz M et al (2019) Bioactivities and extract dereplication of Actinomycetales isolated from marine sponges. Front Microbiol 10:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Saravanan P, Dusthackeer VNA, Rajmani RS et al (2021) Discovery of a highly potent novel rifampicin analog by preparing a hybrid of the precursors of the antibiotic drugs rifampicin and clofazimine. Sci Rep 11:1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722

  • Schaffert L, Albersmeier A, Winkler A et al (2016) Complete genome sequence of the actinomycete Actinoalloteichus hymeniacidonis type strain HPA 177T isolated from a marine sponge. Environ Microbiome 11:91

  • Schippers KJ, Sipkema D, Osinga R et al (2012) Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. Adv Mar Biol 62:273–337

    Article  PubMed  Google Scholar 

  • Schläppy ML, Schottner SI, Lavik G et al (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EW (2008) Trading molecules and tracking targets in symbiotic interactions. Nat Chem Biol 4:466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Angermeier H, Schiller R et al (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  CAS  PubMed  Google Scholar 

  • Schönberg CHL, Suwa R, Hidaka M, Loh WKW (2008) Sponge and coral zooxanthellae in heat and light: preliminary results of photochemical efficiency monitored with pulse amplitude modulated fluorometry. Mar Ecol 29:247–258

    Article  Google Scholar 

  • Schorn MA, Jordan PA, Podell S et al (2019) Comparative genomics of cyanobacterial symbionts reveals distinct, specialized metabolism in tropical Dysideidae sponges. MBio 10:e00821–19

  • Schröder HC, Ushijima H, Krasko A et al (2003) Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa. A tachylectin-related protein in the sponge Suberites domuncula. J Biol Chem 278:32810–32817

    Article  PubMed  CAS  Google Scholar 

  • Seipke RF, Hutchings MI (2013) The regulation and biosynthesis of antimycins. Beilstein J Org Chem 9:2556–2563

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvin J, Ninawe AS, Kiran GS, Lipton AP (2010) Sponge-microbial interactions: Ecological implications and bioprospecting avenues. Crit Rev Microbiol 36:82–90

    Article  CAS  PubMed  Google Scholar 

  • Shelton WS, Pocher JP (2005) WIPO Patent No. WO 2005023955 A2. Switzerland: World Intellectual Property Organization

  • Shepp DH, Dandliker PS, Meyers JD (1986) Treatment of varicella-zoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. N Engl J Med 314:208–212

    Article  CAS  PubMed  Google Scholar 

  • Shoham S, Weinberger A, Kaplan A et al (2021) Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: bioremediation potential. Ecotoxicol Environ Saf 222:112522

  • Shreadah MA, Monem NMA, Yakout GA, Ela HMA (2018) Bacteria from marine sponges: a source of biologically active compounds. Biomed J Sci Tech Res 10:8159–8178

  • Sibero MT, Triningsih DW, Radjasa OK et al (2017) Evaluation of antimicrobial activity and identification of yellow pigmented marine sponge-associated fungi from Teluk Awur, Jepara, Central Java. Indones J Biotechnol 21:1–11

  • Sibero MT, Zhou T, Fukaya K et al (2019) Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein J Org Chem 15:2941–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva SG, Blom J, Keller-Costa T, Costa R (2019) Comparative genomics reveals complex natural product biosynthesis capacities and carbon metabolism across host-associated and free-living Aquimarina (Bacteroidetes, Flavobacteriaceae) species. Environ Microbiol 21:4002–4019

    Article  CAS  PubMed  Google Scholar 

  • Sipkema D, Holmes B, Nichols SA, Blanch HW (2009) Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms. Microbial Ecology 58:903

  • Soares PRS, Birolli WG, Ferreira IM, Porto ALM (2021) Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar Pollut Bull 166:112185

  • Srivastava M, Simakov O, Chapman J et al (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley A, Murthy PSK, Vijayendra SVN (2020) Characterization of polyhydroxyalkanoate produced by Halomonas venusta KT832796. J Polym Environ 28:973–983

    Article  CAS  Google Scholar 

  • Stefani FOP, Bell TH, Marchand C et al (2015) Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10:e0128272

  • Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey MA, Andreassend SK, Bracegirdle J et al (2020) Metagenomic exploration of the marine sponge Mycale hentscheli uncovers multiple polyketide-producing bacterial symbionts. MBio 11:e02997–19

  • Suita K, Fujita T, Cai W et al (2018) Vidarabine, an anti-herpesvirus agent, prevents catecholamine-induced arrhythmias without adverse effect on heart function in mice. Pflugers Arch 470:923–935

    Article  CAS  PubMed  Google Scholar 

  • Tai YT, Foong CP, Najimudin N, Sudesh K (2016) Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach. J Biosci Bioeng 121:355–364

    Article  CAS  PubMed  Google Scholar 

  • Tawfike AF, Attia EZ, Desoukey SY, Hajjar D, Makki AA, Schupp PJ, Edrada-Ebel R, Abdelmohsen UR (2019) New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 9:1–9

    Article  CAS  Google Scholar 

  • Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis–a bioinformatic perspective. Brief Bioinform 13:728–742

    Article  PubMed  PubMed Central  Google Scholar 

  • Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–111

    Article  PubMed  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A et al (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: Potential basis for epibacterial chemical defense. Aquat Microb Ecol 31:77–83

    Article  Google Scholar 

  • Thomas T, Moitinho-Silva L, Lurgi M et al (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:1–12

  • Thomas TRA, Kavlekar DP, Bharathi PAL (2010) Marine drugs from sponge-microbe association — a review. Mar Drugs 8:1417–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Kruger RH, Thompson FL (2017) Unlocking marine biotechnology in the developing world. Trends Biotechnol 35:1119–1121

    Article  CAS  PubMed  Google Scholar 

  • Thulasinathan B, Jayabalan T, Sethupathi M et al (2021) Bioelectricity generation by natural microflora of septic tank wastewater (STWW) and biodegradation of persistent petrogenic pollutants by basidiomycetes fungi: an integrated microbial fuel cell system. J Hazard Mater 412:125228

  • Tian C, Ni J, Chang F et al (2016) Bio-source of di-n-butyl phthalate production by filamentous fungi. Sci Rep 6:1–8

    CAS  Google Scholar 

  • Vermeer CM, Rossi E, Tamis J et al (2021) From waste to self-healing concrete: a proof-of-concept of a new application for polyhydroxyalkanoate. Resour Conserv Recycl 164:105206

  • Viegelmann C, Margassery LM, Kennedy J, Zhang T, O’Brien C, O’Gara F, Morrissey JP, Dobson ADW, Edrada-Ebel R (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12:3323–3351

  • Vieira H, Leal MC, Calado R (2020) Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol 38:940–943

    Article  CAS  PubMed  Google Scholar 

  • Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H (2019) Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb Ecol 78:243–256

    Article  CAS  PubMed  Google Scholar 

  • Vitale GA, Sciarretta M, Cassiano C et al (2020) Molecular network and culture media variation reveal a complex metabolic profile in Pantoea cf. eucrina D2 associated with an acidified marine sponge. Int J Mol Sci 21:6307

  • Webster NS, Negri AP, Webb RI, Hill RT (2002) A spongin-boring alpha-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309

    Article  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Taylor MW, Behnam F et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster NS, Thomas T (2016) The Sponge Hologenome. MBio 7:e00135-e216

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Article  PubMed  Google Scholar 

  • Wiens M, Korzhev M, Krasko A et al (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 280:27949–27959

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmus KR (2015) Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst Rev 2015:CD002898

  • Wilson ME (1995) Travel and the emergence of infectious diseases. Emerg Infect Dis 1:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Wang F, Guo L et al (2010) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J 5:414–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin X, Huang G, Zhou X et al (2016) Potential antifouling compounds with antidiatom adhesion activities from the sponge-associated bacteria, Bacillus pumilus. J Adhes Sci Technol 31:1–16

    Google Scholar 

  • Yang F, Zeng X, Ning K et al (2011) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6:1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Q, Franco CMM, Zhang W (2019) Uncovering the hidden marine sponge microbiome by applying a multi-primer approach. Sci Rep 9:6214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatim AFM, Syafiq IM, Huong KH et al (2017) Bioconversion of novel and renewable agro-industry by-products into a biodegradable poly(3-hydroxybutyrate) by marine Bacillus megaterium UMTKB-1 strain. Biotechnologia 98:141–151

    Article  CAS  Google Scholar 

  • Yu TJ, Hsieh CY, Tang JY, Lin LC, Huang HW, Wang HR, Yeh YC, Chuang YT, Ou-Yang F, Chang HW (2020) Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. Environ Toxicology 35:1212–1224

    Article  CAS  Google Scholar 

  • Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules (basel, Switzerland) 21:559

    Article  CAS  Google Scholar 

  • Zhang B, Zhang T, Xu J et al (2020) Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery: a review. Mini-Rev Med Chem 20:1966–2010

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu H, Liu Y, Huo K, Wang S, Liu R, Yang C (2021) A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int J Biol Macromol 191:608–617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Justin Brian Chiongson is acknowledged for his invaluable technical assistance in the preparation of this manuscript.

Funding

Partial financial support was received from the Postgraduate Research Grant (PGRG), Universiti Malaysia Terengganu (55193/1). The DOST-PCHRD Tuklas Lunas Development Center project award to University of San Agustin is acknowledged for supporting the drug discovery program of Center for Natural Drug Discovery & Development (CND3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kesaven Bhubalan, Tan Suet May Amelia, Afiq Durrani Mohd Fahmi; formal analysis and investigation: Tan Suet May Amelia, Ferr Angelus C Suaberon; writing–original draft preparation: Tan Suet May Amelia, Ferr Angelus C Suaberon; writing–review and editing: Tan Suet May Amelia, Johanne Vad, Jonel P Saludes, Afiq Durrani Mohd Fahmi; supervision: Kesaven Bhubalan, Jonel P Saludes.

Corresponding author

Correspondence to Kesaven Bhubalan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelia, T.S.M., Suaberon, F.A.C., Vad, J. et al. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. Mar Biotechnol 24, 492–512 (2022). https://doi.org/10.1007/s10126-022-10130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10130-2

Keywords

Navigation