Skip to main content
Log in

Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Manila clam (Ruditapes philippinarum) is one of the most important aquaculture species and widely distributed along the coasts of China, Japan, and Korea. Due to its wide distribution, it can tolerate a wide range of temperature. Studying the gene expression profiles of clam gills had found differentially expressed genes (DEGs) and pathway involved in temperature stress tolerance. A systematic study of cellular response to temperature stress may provide insights into the mechanism of acquired tolerance. Here, weighted gene co-expression network analysis (WGCNA) was carried out using RNA-seq data from gill transcriptome in response to high and low temperature stress. There are a total 32 gene modules, of which 18 gene modules were identified as temperature-related modules. Blue module was one significantly correlated with temperature which was associated with cellular metabolism, apoptosis pathway, ER stress, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anders A (2012) Analysing RNA-Seq data with the DESeq package. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, pp 1–25

  • Artemov AV, Mugue NS, Rastorguev SM, Zhenilo S, Mazur AM, Tsygankova SV (2017) Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and fresh water conditions. Mol Biol Evol 34:2203–2213

    Article  CAS  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  Google Scholar 

  • Chen Y, Yuan F, Bi H, Zhang Z, Yue H, Yuan K (2016) Transcriptome analysis of the unfolded protein response in hemocytes of Litopenaeus vannamei. Fish Shellfish Immunol 54:153e163

  • Cossins AR, Crawford DL (2005) Fish as models for environmental genomics. Nat Rev Genet 6:324–333

    Article  CAS  Google Scholar 

  • Dong S, Nie H, Cai DLZ, Sun X, Huo Z, Yan X (2020) Molecular cloning and characterization of Y-box gene (Rpybx) from Manila clam and its expression analysis in different strains under low-temperature stress. Anim Genet 51:430–438

    Article  CAS  Google Scholar 

  • Dong Y, Yao H, Zhou X, Lin Z (2018) Genetic analysis assessed by microsatellites for a diallel mating design of two geographical stocks of the blood clam Tegillarca granosa. Genes Genom 40:373–379

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95:14863–14868

    Article  CAS  Google Scholar 

  • FAO, Food & Agriculture Organization (2019) Fishery and aquaculture statistics 2017. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO, Food & Agriculture Organization (2021) FAO yearbook. Fishery and aquaculture statistics 2019/FAO annuaire. Statistiques des pêches et de l'aquaculture 2019/FAO anuario. Estadísticas de pescay acuicultura 2019

  • Fu X, Sun Y, Wang J, Xing Q, Zou J, Li R, Wang Z, Wang S, Hu X, Zhang L, Bao Z (2014) Sequencing-based gene network analysis provides acore set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri. Mol Ecol Resour 14:184–198

    Article  CAS  Google Scholar 

  • Fuller T, Langfelder P, Presson A, Horvath S (2011) Review of weighted gene coexpression network analysis. In: Schölkopf B, Zhao H (eds) Lu HH-S. Handbook of Statistical Bioinformatics. Springer-Verlag, Berlin, Heidelberg, 369–388

    Google Scholar 

  • Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Plant Biol 105:16398–16403

    CAS  Google Scholar 

  • Goldspink G (1995) Adaptation of fish to different environmental temperature by qualitative and quantitative changes in gene expression. J Therm Biol 20:167–174

    Article  CAS  Google Scholar 

  • Green BS, Fisher R (2004) Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Biol Ecol 299:115–132

    Article  Google Scholar 

  • Han KN, Lee SW, Wang SY (2008) The effect of temperature on the energy budget of the Manila clam, Ruditapes philippinarum. Aquacult Int 16:143–152

    Article  Google Scholar 

  • Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, Hitzemann R (2015) Cosplicing network analysis of mammalian brain RNA-seq data utilizing WGCNA and mantel correlations. Front Genet 6:174

    Article  Google Scholar 

  • Jahan K, Nie H, Yin Z, Zhang Y, Li N, Yan X (2022) Comparative transcriptome analysis to reveal the genes and pathways associated with adaptation strategies in two different populations of Manila clam (Ruditapes philippinarum) under acute temperature challenge. Aquaculture 552:737999

  • Jiang K, Nie H, Li D, Yan X (2020) New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 21(1):531

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  Google Scholar 

  • Lan Y, Ye T, Xue Y, Liu H, Zhang H, Cheng D, Zhao M, Zhang Y, Li S, Ma H, Zheng H (2018) Physiological and immunological responses to mass mortality in noble scallop Chlamys nobilis cultured in Nan’ao waters of Shantou, China. Fish Shellfish Immunol 82:453–459

    Article  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  Google Scholar 

  • Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558

    Article  CAS  Google Scholar 

  • Zou D, Ning J (2021) Physiological and Transcriptional Responses to Acute and Chronic Thermal stress in the Ark Shell Scapharca subcrenata. Front. Mar. Sci. 8:1-11

    CAS  Google Scholar 

  • Liu W, Ye H (2014) Co-expression network analysis identifies transcriptional modules in the mouse liver. Mol Gen Genom 289:847–853

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408

  • López-Olmeda JF, Sánchez-Vázquez FJ (2011) Thermal biology of zebrafish (Danio rerio). J Therm Biol 36:91–104

    Article  Google Scholar 

  • Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, Uher R, McGuffin P, Schalkwyk LC (2013) Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 14:1979–1990

    Article  CAS  Google Scholar 

  • Morgan M, Falcon S, Gentleman R (2008) GSEABase: Gene set enrichment data structures and methods. R package version 1. Availabe at http://www.bioconductor.org

  • Nie H, Jiang L, Huo Z, Liu L, Yang F, Yan X (2016) Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum. Fish Shellfish Immunol 55:358–366

    Article  CAS  Google Scholar 

  • Nie H, Liu L, Huo Z, Chen P, Ding J, Yang F, Yan X (2017) The HSP70 gene expression responses to thermal and salinity stress in wild and cultivated Manila clam Ruditapes philippinarum. Aquaculture 470:149–156

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  CAS  Google Scholar 

  • Rahman MA, Henderson S, Miller-Ezzy P, Li XX, Qin JG (2019) Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish Shellfish Immunol 86:868–874

    Article  CAS  Google Scholar 

  • Ramsøe A, Clark MS, Sleight VA (2020) Gene network analyses support subfunctionalization hypothesis for duplicated hsp70 genes in the Antarctic clam. Cell Stress Chaperones 25:1111–1116

    Article  Google Scholar 

  • Richard G, Bris CL, Guerard F, Lambert C, Paillard C (2015) Immune responses of phenoloxidase and superoxide dismutase in the Manila clam Venerupis philippinarum challenged with Vibrio tapetis--part II: combined effect of temperature and two V. tapetis strains. Fish Shellfish Immunol 44(1):79–87

  • Saucedo PE, Ocampo L, Monteforte M, Bervera H (2004) Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229:377–387

    Article  Google Scholar 

  • Shirane M, Nakayama KI (2006) Protrudin induces neurite formation by directional membrane trafficking. Science 314:818e821

  • Soon TK, Zheng H (2019) Climate change and bivalve mass mortality in temperate regions. Rev Environ Contam Toxicol 251:109–129

    Google Scholar 

  • Widdows J (1973a) Effect of temperature and food on the heart-beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar Biol 20:269–276

    Article  Google Scholar 

  • Widdows J (1973b) The effects of temperature on the metabolism and activity of Mytilus edulis. Neth J Sea Res 7:387–398

    Article  Google Scholar 

  • Xu X, Yang F, Zhu H, Liu ZY L, Zhang Y, Zhao LQ (2015) Effects of temperature on oxygen consumption rate, ammonia excretion rate of juvenile Manila clam Ruditapes philippinarum with three color shells. J Dalian Fisheries Univ 30:627–633

    Google Scholar 

  • Yang C, Gao Q, Liu C, Wang L, Zhou Z, Gaog C, Zhang A, Zhang H, Qiu L, Song L (2017) The transcriptional response of the Pacific oyster Crassostrea gigas against acute heat stress. Fish Shellfish Immunol 68:132–143

    Article  CAS  Google Scholar 

  • Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H (2014) Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 5:3231

    Article  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Article  Google Scholar 

  • Zhang GF, Yan XW (2006) A new three-phase culture methods for Manila clam, Ruditapes philippinarum, farming in northern China. Aquaculture 258 (1-4):452–461

    Article  Google Scholar 

  • Zhang WY, Storey KB, Dong YW (2020) Adaptations to the mudflat: insights from physiological and transcriptional responses to thermal stress in a burrowing bivalve Sinonovacula constricta. Sci Total Environ 710:136280

  • Zhao X, Yu H, Kong L, Li Q (2016) Gene co-expression network analysis reveals the correlation patterns among genes in Euryhaline adaptation of Crassostrea gigas. Mar Biotechnol 18:535–544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Ministry of Science and Technology through the National Key Research and Development Program of China (2018YFD0901400, 2019YFD0900704) and supported by China Agriculture Research System of MOF and MARA, the Intercollegiate Joint training Program of Colleges and Universities in Liaoning Province, and the Scientific Research funding from Liaoning Provincial Department of Education (LJKZ0701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Nie.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, K., Yin, Z., Zhang, Y. et al. Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam. Mar Biotechnol 24, 542–554 (2022). https://doi.org/10.1007/s10126-022-10117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10117-z

Keywords

Navigation