Skip to main content
Log in

Optimized Sensory Units Integrated in the Chiton Shell

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The first step for animals to interact with external environment is to sense. Unlike vertebrate animals with flexibility, it is challenging for ancient animals that are less flexible especially for mollusca with heavy shells. Chiton, as an example, has eight overlapping shells covering almost the whole body, is known to incorporate sensory units called aesthetes inside the shell. We used micro-computed tomography combined with quantitative image analysis to reveal the optimized shell geometry to resist force and the aesthetes’ global distribution at the whole animal levels to facilitate sense from diverse directions both in the seawater and air. Additionally, shell proteomics combined with transcriptome reveals shell matrix proteins responsible for shell construction and potentially sensory function, highlighting unique cadherin-related proteins among mollusca. Together, this multi-level evidence of sensory units in the chiton shell may shed light on the formation of chiton shells and inspire the design of hard armor with sensory function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data of micro-CT were stored in the MorphoBank and can be accessed through http://morphobank.org/permalink/?P4139. The transcriptome data were deposited in the Sequence Read Archive of NCBI with accession number SAMN21190197-SAMN21190202. The proteomics data were provided in the supplementary materials.

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Article  CAS  PubMed  Google Scholar 

  • Arey LB, Crozier WJ (1919) The sensory responses of Chiton. J Exp Zool 29:157–260

    Article  CAS  Google Scholar 

  • Baxter J, Jones A (1984) The valve morphology of Cullochhiton uchutinus (Mollusca: Polyplacophora: Ischnochitonidae). J Zool 202:549–560

    Article  Google Scholar 

  • Boyle PR (1974) The aesthetes of chitons. Cell Tissue Res 172:379–388

    Article  Google Scholar 

  • Connors MJ, Ehrlich H, Hog M, Godeffroy C, Araya S, Kallai I, Gazit D, Boyce M, Ortiz C (2012) Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. J Struct Biol 177:314–328

    Article  PubMed  Google Scholar 

  • Currie DR (2013a) Photoreceptor or statocyst? The ultrastructure and function of a unique sensory organ embedded in the shell valves ofCryptoplax mysticaIredale & Hull, 1925 (Mollusca:Polyplacophora). J Malacol Soc Australia 13:15–25

    Article  Google Scholar 

  • Currie DR (2013b) Valve sculpturing and aesthete distributions in four species of Australian chitons (Mollusca: Polyplacophora). J Malacol Soc Australia 10:69–86

    Article  Google Scholar 

  • Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. P Natl Acad Sci USA 110:3788–3793

    Article  CAS  Google Scholar 

  • Eder M, Amini S, Fratzl P (2018) Biological composites: complex structures for functional diversity. Science 362:543–547

    Article  CAS  PubMed  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Gao P, Liao Z, Wang XX, Bao LF, Fan MH, Li XM, Wu CW, Xia SW (2015) Layer-by-Layer Proteomic analysis of Mytilus galloprovincialis Shell. PLoS One 10:e0137487

  • Ishikawa A, Shimizu K, Isowa Y, Takeuchi T, Zhao R, Kito K, Fujie M, Satoh N, Endo K (2020) Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Sci Rep 10:9768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MK, Hazell PJ, Escobedo JP, Wang H (2021) Biomimetic armour design strategies for additive manufacturing: A review. Mater Des 205:109730

  • Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C, Griesshaber E, Schmahl W, Wörheide G (2015) The Magellania venosa biomineralizing proteome: a window into brachiopod shell evolution. Genome Biol Evo 7:1349–1362

    Article  CAS  Google Scholar 

  • Kniprath E (1980) Ontogenetic plate and plate field development in two chitons, Middendorffia and Ischnochiton. Wilhelm Roux’ Archiv 189:97–106

    Article  Google Scholar 

  • Li L, Connors MJ, Kolle M, England GT, Speiser DI, Xiao X, Aizenberg J, Ortiz C (2015) Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350:952–956

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu Y, Liu C, Huang J, Zheng G, Xie L, Zhang R (2016) Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish Shellfish Immunol 51:263–270

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Bao L-F, Fan M-H, Gao P, Wang X-X, Qin C-L, Li X-M (2015) In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. J Proteomics 122:26–40

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY (2019) Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 14:e0219699

  • Liu C, Ji X, Huang J, Wang Z, Liu Y, Hincke MT (2021) Proteomics of shell matrix proteins from the cuttlefish bone reveals unique evolution for cephalopod biomineralization. ACS Biomater Sci Eng

  • Liu C, Li S, Kong J, Liu Y, Wang T, Xie L, Zhang R (2015) In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci Rep 5:17269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang R (2021a) Biomineral proteomics: a tool for multiple disciplinary studies. J Proteomics 238:104171

  • Liu C, Zhang R (2021b) Identification of novel adhesive proteins in pearl oyster by proteomic and bioinformatic analysis. Biofouling 1–10

  • Luo Y-J, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, Fujie M, Yamasaki S-I, Endo K, Satoh N (2015) The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Comm 6:8301

    Article  CAS  Google Scholar 

  • Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cléon I, Guichard N, Marin F (2013) The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J 280:214–232

    Article  CAS  PubMed  Google Scholar 

  • Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci USA 109:20986–20991

    Article  CAS  Google Scholar 

  • Michael JV, Christine ZF, Douglas JE, Bruce R (2008) Aesthete canal morphology in the Mopaliidae (Polyplacophora). Am Malacol Bull 25:51–69

    Article  Google Scholar 

  • Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–592

    Article  CAS  PubMed  Google Scholar 

  • Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304:297–300

    Article  CAS  PubMed  Google Scholar 

  • Oudot M, Neige P, Shir IB, Schmidt A, Strugnell JM, Plasseraud L, Broussard C, Hoffmann R, Lukeneder A, Marin F (2020) The shell matrix and microstructure of the Ram’s Horn squid: molecular and structural characterization. J Struct Biol 211

  • Peebles BA, Gordon KC, Smith AM, Smith GPS (2017) First record of carotenoid pigments and indications of unusual shell structure in chiton valves. J Molluscan Stud 83:476–480

    Article  Google Scholar 

  • Ponder WF, Lindberg DR, Ponder JM (2020) Polyplacophora, monoplacophora and aplacophorans 67–108

  • Punovuori K, Malaguti M, Lowell S (2021) Cadherins in early neural development. Cell Mol Life Sci 78:4435–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cléon I, Guichard N, Miller DJ, Marin F (2013) The skeletal proteome of the coral Acropora millepora: The evolution of calcification by co-option and domain shuffling. Mol Biol Evol 30:2099–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Kimura K, Isowa Y, Oshima K, Ishikawa M, Kagi H, Kito K, Hattori M, Chiba S, Endo K (2018) Insights into the evolution of shells and love darts of land snails revealed from their matrix proteins. Genome Biol Evo 11:380–397

    Article  Google Scholar 

  • Speiser D, Eernisse I, Douglas J, Johnsen S (2011) A chiton uses aragonite lenses to form images. Cur Biol 21:665–670

    Article  CAS  Google Scholar 

  • Sturrock M, Baxter J (1994) The fine structure of the pigment body complex in the intrapigmented aesthetes of Callochiton achatinus (Mollusca: Polyplacophora). J Zool 235:127–141

    Article  Google Scholar 

  • Sun Y, Sun J, Yang Y, Lan Y, Ip JC-H, Wong WC, Kwan YH, Zhang Y, Han Z, Qiu J-W, Qian P-Y (2021) Genomic Signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica. Mol Biol Evol 38:4116–4134

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Fujie M, Koyanagi R, Plasseraud L, Ziegler-Devin I, Brosse N, Broussard C, Satoh N, Marin F (2021) The shellome of the Crocus clam Tridacna crocea emphasizes essential components of mollusk shell biomineralization. Front Genet 12:674539

  • Varney RM, Speiser DI, Mcdougall C, Degnan BM, Kocot KM (2020) The Iron-responsive genome of the chiton Acanthopleura granulata. Genome Biol Evol 13:evaa263

  • Vendrasco MJ, Wood TE, Runnegar BN (2004) Articulated Palaeozoic fossil with 17 plates greatly expands disparity of early chitons. Nature 429:288–291

    Article  CAS  PubMed  Google Scholar 

  • Vinther J (2009) The canal system in sclerites of lower cambriansinosachites(Halkieriidae: Sachitida): significance for the molluscan affinities of the sachitids. Palaeontology 52:689–712

    Article  Google Scholar 

  • Von Middendorff, AT (1847) Beiträge zu einer Malakozoologia Rossica. Chitonen. Mémoires Sciences Naturelles l’Académie Impériale des Sciences St. Petersburg  6:69–215

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CEW, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Bock C, Ketten DR, Mair RW, Mueller S, Nagelmann N, Pracht ED, Schröder L (2018) Digital three-dimensional imaging techniques provide new analytical pathways for malacological research. Am Malacol Bull 36:26

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shi Wen, the application specialist of Carl Zeiss company, for her help in the nano-CT test and analysis.

Funding

Chuang Liu received support from the Natural Science Foundation of Jiangsu Province BK20210363, the Fundamental Research Funds for the Central Universities B200201065, and Jiangsu Innovation Talent Program JSSCBS20210250. Jiangliang Huang received support from the National Natural Science Foundation of China Grants 42106091.

Author information

Authors and Affiliations

Authors

Contributions

C.L. conceived the project, analyzed the data, and wrote the manuscript. H.P.L., X.J., J.L.H., and C.L., performed experiment. J.L.H. contributed to data analysis and revised the manuscript.

Corresponding author

Correspondence to Chuang Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, H., Huang, J. et al. Optimized Sensory Units Integrated in the Chiton Shell. Mar Biotechnol 24, 380–392 (2022). https://doi.org/10.1007/s10126-022-10114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10114-2

Keywords

Navigation