Skip to main content
Log in

Comparative piRNAs Profiles Give a Clue to Transgenerational Inheritance of Sex-Biased piRNAs in Cynoglossus semilaevis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Piwi interacting RNAs (piRNAs) are involved in the epigenetic and post-transcriptional gene silencing of retrotransposons in germ line cells, especially in spermatogenesis. There are many related reports on model organisms, such as flies and mice. In fish, however, there are few studies on piRNAs. Cynoglossus semilaevis, a benthic warm water flatfish, with remarkable sexual dimorphism, especially the “pseudo males” with sex reversal, mating with normal females to produce viable offspring, is an ideal material for the study of sex development. Here, sperm piwi-interacting RNAs profiles of Cynoglossus semilaevis were characterized, comparing between male and pseudomale groups. Differential piRNAs were identified with their predicted and annotated targets. Attention was then focused on candidate piRNAs associated with sex development and methylation. We continued to compare the expression levels of 10 candidates differentially expressed piRNAs in F1 spermatozoa. Quantitative RT-PCR demonstrated that five of the ten piRNAs showed sex bias consistent with parental sequencing results, with four significantly higher expression level in sperm of five males offspring than that of pseudomales, while one piRNAs showed the opposite expression profile. The five signature piRNAs (piR-mmu-49600337, piR-mmu-95849, piR-xtr-7474223, piR-xtr-1790334, and piR-mmu-4491546) could be employed as male-specific molecular biomarkers for C. semilaevis. Besides, this study also implied the possibility of transgenerational inheritance of sex-biased piRNAs exiting in sperm of Cynoglossus semilaevis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amory JK, Coviello AD, Page ST, Anawalt BD, Matsumoto AM, Bremner WJ (2008) Serum 17-hydroxyprogesterone strongly correlates with intratesticular testosterone in gonadotropin-suppressed normal men receiving various dosages of human chorionic gonadotropin. Fertil Steril 89:380–386

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspelund T, Gudnason V, Magnusdottir BT, Andersen K, Sigurdsson G, Thorsson B, Steingrimsdottir L, Critchley J, Bennett K, O’flaherty M, Capewell S (2010) Analysing the large decline in coronary heart disease mortality in the Icelandic population aged 25–74 between the years 1981 and 2006. PLoS One 5:e13957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Priyam M, Foysal MJ, Gupta SK, Sundaray JK (2021) Role of sex-biased miRNAs in teleosts – a review. Rev Aquac 13:269–281

    Article  Google Scholar 

  • Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F (2017) Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between high- and low-motile sperm populations. BMC Genomics 18:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KW, Tseng YT, Chen YC, Yu CY, Liao HF, Chen YC, Tu YE, Wu SC, Liu IH, Pinskaya M, Morillon A, Pain B, Lin SP (2018) Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics 19:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Ji XS, Shao CW, Li WL, Yang JF, Liang Z, Liao XL, Xu GB, Xu Y, Song WT (2012) Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY) 14:120–128

    Article  CAS  Google Scholar 

  • Chen SL, Li J, Deng SP, Tian YS, Wang QY, Zhuang ZM, Sha ZX, Xu JY (2007) Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY) 9:273–280

    Article  CAS  Google Scholar 

  • Dai P, Wang X, Gou LT, Li ZT, Wen Z, Chen ZG, Hua MM, Zhong A, Wang L, Su H, Wan H, Qian K, Liao L, Li J, Tian B, Li D, Fu XD, Shi HJ, Zhou Y, Liu MF (2019) A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 179:e16

    Article  CAS  Google Scholar 

  • Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EV, Jørgensen N, Kristiansen VB, Hansen T, Workman CT, Zierath JR, Barrès R (2016) Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 23:369–378

    Article  CAS  PubMed  Google Scholar 

  • Eachus H, Zaucker A, Oakes JA, Griffin A, Weger M, Guran T, Taylor A, Harris A, Greenfield A, Quanson JL, Storbeck KH, Cunliffe VT, Muller F, Krone N (2017) Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia. Endocrinology 158:4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. Methods Mol Biol 592:51–57

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, Van Den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82

    Article  CAS  PubMed  Google Scholar 

  • Idkowiak J, Randell T, Dhir V, Patel P, Shackleton CH, Taylor NF, Krone N, Arlt W (2012) A missense mutation in the human cytochrome b5 gene causes 46, XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab 97:E465–E475

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Chu G, Zhang Q, Wang Z, Wang X, Zhai J, Yu H (2013) A microsatellite genetic linkage map of half smooth tongue sole (Cynoglossus semilaevis). Mar Genomics 9:17–23

    Article  PubMed  Google Scholar 

  • Kawaoka S, Izumi N, Katsuma S, Tomari Y (2011) 3’ end formation of PIWI-interacting RNAs in vitro. Mol Cell 43:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics, Chapter 11: Unit 11.7. https://doi.org/10.1002/0471250953.bi1107s32

  • Leung MT, Cheung HN, Iu YP, Choi CH, Tiu SC, Shek CC (2020) Isolated 17,20-Lyase deficiency in a CYB5A mutated female with normal sexual development and fertility. J Endocr Soc 4:bvz016

  • Linder N, Davidovitch N, Kogan A, Barzilai A, Kuint J, Mazkeret R, Sack J (1999) Longitudinal measurements of 17alpha-hydroxyprogesterone in premature infants during the first three months of life. Arch Dis Child Fetal Neonatal Ed 81:F175–F178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J (2021) Functional role of piRNAs in animal models and its prospects in aquaculture. Rev Aquac 13:2038–2052

    Article  Google Scholar 

  • Manakov SA, Pezic D, Marinov GK, Pastor WA, Sachidanandam R, Aravin AA (2015) MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell Rep 12:1234–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni F, Yu H, Liu Y, Meng L, Yan W, Zhang Q, Yu H, Wang X (2019) Roles of piwil1 gene in gonad development and gametogenesis in Japanese flounder, Paralichthys olivaceus. Gene 701:104–112

    Article  CAS  PubMed  Google Scholar 

  • Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL (2019) Profiling of epididymal small non-protein-coding RNAs. Andrology 7:669–680

    CAS  PubMed  Google Scholar 

  • O’brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  CAS  Google Scholar 

  • Olovnikov IA, Kalmykova AI (2013) piRNA clusters as a main source of small RNAs in the animal germline. Biochemistry (mosc) 78:572–584

    Article  CAS  Google Scholar 

  • Ozata DM, Gainetdinov I, Zoch A, O’carroll D, Zamore PD (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20:89–108

    Article  CAS  PubMed  Google Scholar 

  • Ozata DM, Yu T, Mou H, Gainetdinov I, Colpan C, Cecchini K, Kaymaz Y, Wu PH, Fan K, Kucukural A, Weng Z, Zamore PD (2020) Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat Ecol Evol 4:156–168

    Article  PubMed  Google Scholar 

  • Pillai RS, Chuma S (2012) piRNAs and their involvement in male germline development in mice. Dev Growth Differ 54:78–92

    Article  CAS  PubMed  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, Schirmer CM, Vorwerk D (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke off J Int Stroke Soc 13:612–632

    Google Scholar 

  • Sato K, Siomi MC (2018) Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol 53:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL, Rando OJ (2018) Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell 46:e6

    Article  CAS  Google Scholar 

  • Song H, Xing C, Lu W, Liu Z, Wang X, Cheng J, Zhang Q (2019) Rapid evolution of piRNA pathway and its transposon targets in Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol Part D Genomics Proteomics 31:100609

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Sun L, Chen J, Shi H, Wang D (2016) Genomic identification, rapid evolution, and expression of Argonaute genes in the tilapia, Oreochromis niloticus. Dev Genes Evol 226:339–348

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lin H (2021) Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol 22:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Reinke V (2008) A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol CB 18:861–867

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S (2019) piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 47:D175-d180

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang R, Hu Q, Xu W, Zhu Y, Yan F, Chen S (2017) Characterization of a low-density lipoprotein receptor, Lrp13, in Chinese tongue sole (Cynoglossus semilaevis) and medaka (Oryzias latipes). Fish Physiol Biochem 43:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Fan J, Li L, Liu Z, Li K (2016) Pretreating porcine sperm with lipase enhances developmental competence of embryos produced by intracytoplasmic sperm injection. Zygote (Cambridge, England) 24:594–602

    Article  CAS  Google Scholar 

  • Wen X, Wang D, Li X, Zhao C, Wang T, Qian X, Yin S (2018) Differential expression of two Piwil orthologs during embryonic and gonadal development in pufferfish, Takifugu fasciatus. Comp Biochem Physiol B: Biochem Mol Biol 219–220:44–51

    Article  CAS  Google Scholar 

  • Wu PH, Fu Y, Cecchini K, Ozata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD (2020) The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 52:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhao N, Jia L, Che J, He X, Liu K, Bao B (2020) Identification and application of piwi-interacting RNAs from seminal plasma exosomes in Cynoglossus semilaevis. BMC Genomics 21:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Jia L, Che J, He X, Zhang B (2021a) Novel molecular marker for RAA-LFD visual detection of Cynoglossus semilaevis sex. Anim Reprod Sci 226:106713

    Article  CAS  PubMed  Google Scholar 

  • Zhao N, Jia L, He X, Zhang B (2021b) Sex bias miRNAs in Cynoglossus semilaevis could play a role in transgenerational inheritance. Comp Biochem Physiol Part D Genomics Proteomics 39:100853

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu J, Sun W, Ding R, Li X, Shangguan A, Zhou Y, Worku T, Hao X, Khan FA, Yang L, Zhang S (2020) Differences in small noncoding RNAs profile between bull X and Y sperm. PeerJ 8:e9822

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zuo Z, Zhou F, Zhao W, Sakaguchi Y, Suzuki T, Suzuki T, Cheng H, Zhou R (2010) Profiling sex-specific piRNAs in zebrafish. Genetics 186:1175–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Tianjin Natural Science Foundation (17JCQNJC15000), the Transformation Project of Tianjin Agricultural Achievements (201604090), the Special Funding for Modern Agricultural Industrial Technology System (CARS-47-Z01), and the Funding Project of Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang 2019 (ZJW-2019–06).

Author information

Authors and Affiliations

Authors

Contributions

BZ and CHZ conceived and designed the project. BZ and NZ carried out computational analysis and expression profiling. NZ contributed to the qRT-PCR analysis. NZ wrote the manuscript. JL and QXD edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunhua Zhu or Bo Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

Weizhuo Ltd. (Tangshan, China) provided live C. semilaevis as semen donors for research. The methods for C. semilaevis research were carried out in accordance with the relevant guidelines and regulations. The protocols were approved by the academic ethics committee of Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Jia, L., Deng, Q. et al. Comparative piRNAs Profiles Give a Clue to Transgenerational Inheritance of Sex-Biased piRNAs in Cynoglossus semilaevis. Mar Biotechnol 24, 335–344 (2022). https://doi.org/10.1007/s10126-022-10109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10109-z

Keywords

Navigation