Skip to main content
Log in

Comparative Transcriptomics of the Northern Quahog Mercenaria mercenaria and Southern Quahog Mercenaria campechiensis in Response to Chronic Heat Stress

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The northern quahog (Mercenaria mercenaria) supports lucrative aquaculture industries in the USA. In the southeastern USA, aquacultured M. mercenaria faces increasing risks of summer die-offs from prolonged heat waves. We used a comparative transcriptomic approach to investigate the molecular responses of M. mercenaria and its southern congener, Mercenaria campechiensis, to controlled incremental heat stress over a 4-week period. Mercenaria were exposed to temperatures from 24 to 34 °C with 2.5 °C/week, after which, gill transcriptomes were de novo assembled and annotated. During the 4 weeks of chronic heat exposure, both species had the same survival rate (96%); M. mercenaria experienced body weight gain/loss depending on the originated hatcheries while M. campechiensis experienced an average net weight loss. The upregulated genes in both species included those in chaperone-mediated protein folding and regulation of cell death pathways, while the downregulated genes in both species involved in mRNA processing and splicing pathways. Compared to M. mercenaria, M. campechiensis appears to be more sensitive to prolonged heat stress as indicated by upregulating significantly more genes in coping with oxidative stress and in the protein degradation pathways, while downregulating some inhibitors of apoptosis. We discussed this finding within their ecological and evolutionary context. Our findings highlighted the potential vulnerability of the two quahogs, especially the southern quahog, to continued ocean warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Raw sequence data for this project have been uploaded to National Center for Biotechnology Information (NCBI) with a BioProject ID #PRJNA743680.

References

  • Abbott RT (1974) American seashells: The marine molluska of the Atlantic and Pacific coasts of North America, 2nd ed. Van Nostrand Reinhold Inc, New York, NY

    Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2015) FASTQC A Quality control tool for high throughput sequence data. In: Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3AnalysisModules/

  • Arnold WS, Bert TM, Marelli DC et al (1996) Genotype-specific growth of hard clams (genus Mercenaria) in a hybrid zone: variation among habitats. Mar Biol 125:129–139

    Article  Google Scholar 

  • Arnold WS, Geiger SP, Stephenson SP (2009) Mercenaria mercenaria introductions into Florida, USA, waters: Duration, not size of introduction, influences genetic outcomes. Aquat Biol 5:49–62

    Article  Google Scholar 

  • Barcia R, Lopez-García JM, Ramos-Martínez JI (1997) The 28S fraction of rRNA in molluscs displays electrophoretic behaviour different from that of mammal cells. Biochem Mol Biol Int 42:1089–1092

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser. B Methodol 57:289–300

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

  • Bryant DM, Johnson K, DiTommaso T et al (2017) A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Yang H, Delaporte M, Zhao S (2007) Immune condition of Chlamys farreri in response to acute temperature challenge. Aquaculture 271:479–487

    Article  Google Scholar 

  • Chen N, Huang Z, Lu C et al (2019) Different transcriptomic responses to thermal stress in heat-tolerant and heat-sensitive pacific abalones indicated by cardiac performance. Front Physiol 10:1–14

    Google Scholar 

  • Chew KK (2001) Introduction of the hard clam (Mercenaria mercenaria) to the Pacific coast of North America with notes on its introduction to Puerto Rico, England, and France. Chapter 16. In: Kraeuter JN, Castagna M (eds) Developments in aquaculture and fisheries science Volume 31, Biology of the hard clam. Elsevier, Amsterdam, The Netherlands, pp 701–709

  • Dabbaghizadeh A, Tanguay RM (2020) Structural and functional properties of proteins interacting with small heat shock proteins. Cell Stress Chaperones 25:629–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBiasse MB, Kelly MW (2016) Plastic and evolved responses to global change: What can we learn from comparative transcriptomics? J Hered 107:71–81

    Article  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon RT (1992) Minimal hybridization between populations of the hard clams, Mercenaria mercenaria and Mercenaria campechiensis, co-occurring in South Carolina. Bull Mar Sci 50:411–416

    Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: Interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215:173–181

    Article  PubMed  Google Scholar 

  • Duarte H, Tejedo M, Katzenberger M et al (2012) Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob Change Biol 18:412–421

    Article  Google Scholar 

  • Elderkin CL, Klerks PL (2005) Variation in: thermal tolerance among three Mississippi River populations of the zebra mussel, Dreissena Polymorpha. J Shellfish Res 24:221–226

  • El-Wazzan E, Scarpa J (2009) Comparative growth of triploid and diploid juvenile hard clams Mercenaria mercenaria notata under controlled laboratory conditions. Aquaculture 289:236–243

    Article  Google Scholar 

  • Evans TG (2015) Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 218:1925–1935

    Article  PubMed  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture. Sustainability in action, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Froehlich HE, Gentry RR, Halpern BS (2018) Global change in marine aquaculture production potential under climate change. Nature Ecology & Evolution 2:1745–1750

    Article  Google Scholar 

  • Gjedrem T, Rye M (2018) Selection response in fish and shellfish: A review. Rev Aquac 10:168–179

    Article  Google Scholar 

  • Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Heekenda EJ, Austin JD, Zhang Z, Yang H (2020) Phenotypic and genetic identification of Mercenaria mercenaria, Mercenaria campechiensis, and their hybrids. J Shellfish Res 39:535–546

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P (2003) Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J Exp Mar Biol Ecol 293:249–265

    Article  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M et al (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J Exp Biol 209:353–363

    Article  CAS  PubMed  Google Scholar 

  • Hollenbeck CM, Johnston IA (2018) Genomic tools and selective breeding in molluscs. Front Genet 9:1–15

    Article  Google Scholar 

  • Hu Z, Song H, Yang M, et al (2019) Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. Comp Biochem Physiol 31:100598. https://doi.org/10.1016/j.cbd.2019.100598

  • Ivanina AV, Dickinson GH, Matoo OB et al (2013) Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol 166:101–111

    Article  CAS  Google Scholar 

  • Jeffries KM, Hinch SG, Sierocinski T et al (2014) Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol Appl 7:286–300

    Article  CAS  PubMed  Google Scholar 

  • Ju S, Shaltiel G, Shamir A et al (2004) Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. J Biol Chem 279:21759–21765

    Article  CAS  PubMed  Google Scholar 

  • Juárez OE, Lafarga-De la Cruz F, Leyva-Valencia I et al (2018) Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar Genomics 42:1–13

    Article  PubMed  Google Scholar 

  • Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349

    Article  CAS  PubMed  Google Scholar 

  • Kültz D (2004) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  CAS  Google Scholar 

  • Lang RP, Bayne CJ, Camara MD et al (2009) Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Mar Biotechnol 11:650–668

    Article  CAS  Google Scholar 

  • Li J, Zhang Y, Mao F et al (2017) Characterization and identification of differentially expressed genes involved in thermal adaptation of the Hong Kong oyster Crassostrea hongkongensis by digital gene expression profiling. Front Mar Sci 4:112

    Article  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): Molecular correlates of invasive success. J Exp Biol 213:3548–3558

    Article  CAS  PubMed  Google Scholar 

  • Loosanoff VL (1954) New advances in the study of bivalve larvae. Am Sci 42:607–624

    Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie C, Taylor D, Arnold W (2001) A history of hard clamming. In: Kraeuter J, Castagna M (eds) Biology of the hard clam. Elsevier, Amsterdam, pp 651–674

    Chapter  Google Scholar 

  • Mangi SC, Lee J, Pinnegar JK et al (2018) The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom. Environ Sci Policy 86:95–105

    Article  CAS  Google Scholar 

  • Menzel W (1977) Selection and hybridization in quahog clam Mercenaria spp. Proceedings of the Annual Meeting - World Mariculture Society 8:507–521

    Article  Google Scholar 

  • National Center for Environmental Information Coastal Water Temperature Guide. https://www.ncei.noaa.gov/access/coastal-water-temperature-guide/. Accessed 20 Aug 2021

  • Naylor RL, Hardy RW, Buschmann AH et al (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563

    Article  CAS  PubMed  Google Scholar 

  • Pai AA, Luca F (2019) Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. Wiley Interdisciplinary Reviews RNA 10:e1503. https://doi.org/10.1002/wrna.1503

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst NW, Munday PL (2011) Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res 62:1015–1026

    Article  CAS  Google Scholar 

  • Park H, Ahn IY, Hye EL (2007) Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones 12:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyam A, Woodcroft BJ, Rai V et al (2019) Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol Biol Evol 36:2922–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Rack JGM, Palazzo L, Ahel I (2020) (ADP-ribosyl) hydrolases: Structure, function, and biology. Genes Dev 34:263–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverter M, Sarter S, Caruso D et al (2020) Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 11:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Agius C, Saliba C et al (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. J Fish Dis 33:789–801

    Article  CAS  PubMed  Google Scholar 

  • Schnytzer Y, Simon-Blecher N, Li J et al (2018) Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Shalgi R, Hurt JA, Lindquist S, Burge CB (2014) Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. Cell Rep 7:1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  CAS  PubMed  Google Scholar 

  • Song H, Guo X, Sun L et al (2021) The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol 19:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, McDowell JR (2021) Comparative transcriptomics of spotted seatrout (Cynoscion nebulosus) populations to cold and heat stress. Ecol Evol 11:1352–1367

    Article  PubMed  Google Scholar 

  • Stewart-Sinclair PJ, Last KS, Payne BL, Wilding TA (2020) A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification. Ecol Evol 10:3518–3534

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturmer LN, Scarpa J, White W, Baker S (2012) Improving hard clam production in Florida through culture of backcrossed hybrids (Mercenaria mercenaria, M. campechiensis). In: National Shellfisheries Association 104th Annual Meeting. p 351

  • Tan K, Zhang H, Zheng H (2020) Selective breeding of edible bivalves and its implication of global climate change. Rev Aquac 12:2559–2572

    Article  Google Scholar 

  • USDA (2019) 2018 Census of Aquaculture. https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Census_of_Aquaculture/index.php

  • Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R et al (2015) Seasonal changes in gene expression and polymorphism of hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. Mar Environ Res 110:25–32

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2011) Myo-inositol and beyond - emerging networks under stress. Plant Sci 181:387–400

    Article  CAS  PubMed  Google Scholar 

  • Wabnitz CCC, Lam VWY, Reygondeau G et al (2018) Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS ONE 13

  • Wang K, del Castillo C, Corre E et al (2016) Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics 17:1–22

    CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber K, Sturmer L, Hoover E, Baker S (2007) The role of water temperature in hard clam aquaculture, https://edis.ifas.ufl.edu/pdf/FA/FA15100.pdf

  • Yang H, Guo X (2018) Triploid hard clams Mercenaria mercenaria produced by inhibiting polar body I or polar body II. Aquac Res 49:449–461

    Article  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li L, Meng J et al (2016) Molecular basis for adaptation of oysters to stressful marine intertidal environments. Annu Rev Anim Biosci 4:357–381

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Song H, Feng J et al (2021) RNA-Seq analysis and WGCNA reveal dynamic molecular responses to air exposure in the hard clam Mercenaria mercenaria. Genomics 113:2847–2859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yanping Zhang for discussion with sample processing and RNA sequencing, and graduate student Jayme C Yee and research scientist Dr. Yuanzi Huo for help with quahog culture and feeding.

Funding

This study was supported by funds from National Sea Grant Aquaculture Program (NA18OAR4170344 and a sub-award 80794/3/1158304 for UF). Also, this study was partly supported by the Gulf States Marine Fisheries Commission (ACQ-210–039-2019-UFL) and the National Institute of Food and Agriculture, United States Department of Agriculture (Hatch project FLA-FOR-005385).

Author information

Authors and Affiliations

Authors

Contributions

JS: design of the work; acquisition, analysis, or interpretation of data; writing—original draft; writing—review and editing. JA: conception; interpretation of data; writing—review and editing; funding acquisition. HY: conception; design of the work; data curation; supervision; visualization; writing—original draft; writing—review and editing; funding acquisition.

Corresponding author

Correspondence to Huiping Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Austin, J.D. & Yang, H. Comparative Transcriptomics of the Northern Quahog Mercenaria mercenaria and Southern Quahog Mercenaria campechiensis in Response to Chronic Heat Stress. Mar Biotechnol 24, 276–292 (2022). https://doi.org/10.1007/s10126-022-10101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10101-7

Keywords

Navigation