Skip to main content

Advertisement

Log in

Cells Isolated from Regenerating Caudal Fin of Sparus aurata Can Differentiate into Distinct Bone Cell Lineages

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Teleosts have the ability to regenerate their caudal fin upon amputation. A highly proliferative mass of undifferentiated cells called blastema forms beneath wound epidermis and differentiates to regenerate all missing parts of the fin. To date, the origin and fate of the blastema is not completely understood. However, current hypotheses suggest that the blastema is comprised of lineage-restricted dedifferentiated cells. To investigate the differentiation capacity of regenerating fin-derived cells, primary cultures were initiated from the explants of 2-days post-amputation (dpa) regenerates of juvenile gilthead seabream (Sparus aurata). These cells were subcultured for over 30 passages and were named as BSa2. After 10 passages they were characterized for their ability to differentiate towards different bone cell lineages and mineralize their extracellular matrix, through immunocytochemistry, histology, and RT-PCR. Exogenous DNA was efficiently delivered into these cells by nucleofection. Assessment of lineage-specific markers revealed that BSa2 cells were capable of osteo/chondroblastic differentiation. BSa2 cells were also found to be capable of osteoclastic differentiation, as demonstrated through TRAP-specific staining and pit resorption assay. Here, we describe the development of the first successful cell line viz., BSa2, from S. aurata 2-dpa regenerating caudal fins, which has the ability of multilineage differentiation and is capable of in vitro mineralization. The availability of such in vitro cell systems has the potential to stimulate research on the mechanisms of cell differentiation during fin regeneration and provide new insights into the mechanisms of bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201

    PubMed  Google Scholar 

  • Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    PubMed  Google Scholar 

  • Ando K, Shibata E, Hans S, Brand M, Kawakami A (2017) Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Dev Cell 43:643–650.e3

  • Aubin JE, Triffit JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, vol 1. Academic Press, San Diego, pp 59–81

    Google Scholar 

  • Bellows CG, Reimers SM, Heersche JN (1999) Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res 297:249–259

    PubMed  CAS  Google Scholar 

  • Bills CE, Eisenberg H, Pallante SL (1974) Complexes of organic acids with calcium phosphate: the von Kossa stain as a clue to the composition of bone mineral. Johns Hopkins Med J 128:194–207

    PubMed  CAS  Google Scholar 

  • Blum N, Begemann G (2012) Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development. 139:107–116

    PubMed  CAS  Google Scholar 

  • Blum N, Begemann G (2015) Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 142:2894–2903

    PubMed  CAS  Google Scholar 

  • Bou-Gharios G, De Crombrugghe B (2008) Type I collagen structure, synthesis and regulation. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology. Elsevier, Amsterdam, pp 285–318

    Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923

    PubMed  CAS  Google Scholar 

  • Burstone MS (1959) Histochemical demonstration of acid phosphatase activity in osteoclasts. J Histochem Cytochem 7:39–41

    PubMed  CAS  Google Scholar 

  • Carlson BM (2005) Some principles of regeneration in mammalian systems. Anat Rec B New Anat 287:4–13

    PubMed  Google Scholar 

  • Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192:4–13

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    PubMed  CAS  Google Scholar 

  • Costa MA, Fernandes MH (2000) Long-term effects of parathyroid hormone, 1,25-dihydroxyvitamin d3, and dexamethasone on the cell growth and functional activity of human osteogenic alveolar bone cell cultures. Pharmacol Res 42:345–353

    Google Scholar 

  • Cowles EA, DeRome ME, Pastizzo G, Brailey LL, Gronowicz GA (1998) Mineralization and the expression of matrix proteins during in vivo bone development. Calcif Tissue Int 62:74–82

    PubMed  CAS  Google Scholar 

  • Dasyani M, Tan WH, Sundaram S, Imangali N, Centanin L, Wittbrodt J, Winkler C (2019) Lineage tracing of col10a1 cells identifies distinct progenitor populations for osteoblasts and joint cells in the regenerating fin of medaka (Oryzias latipes). Dev Biol 455:85–99

    PubMed  CAS  Google Scholar 

  • Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25:757–768

    PubMed  CAS  Google Scholar 

  • Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewshi E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    PubMed  CAS  Google Scholar 

  • Fonseca VG, Rosa J, Laizé V, Gavaia PJ, Cancela ML (2011) Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream. Gene Expr Patterns 11:448–455

    PubMed  CAS  Google Scholar 

  • Fournier B, Price PA (1991) Characterization of a new human osteosarcoma cell line OHS-4. J Cell Biol 114:577–583

    PubMed  CAS  Google Scholar 

  • Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE Is Necessary and Sufficient for Osteoblast-mediated Activation of Bone Resorption in Osteoclasts. J Exp Med 188:997–1001

  • García-Pérez MA, Noguera I, Hermenegildo C, Martínez-Romero A, Tarín JJ, Cano A (2006) Alterations in the phenotype and function of immune cells in ovariectomy-induced osteopenic mice. Hum Reprod 21:880–887

    PubMed  Google Scholar 

  • Gavaia PJ, Sarasquete C, Cancela ML (2000) Detection of mineralized structures in early stages of development of marine Teleostei using a modified alcian blue-alizarin red double staining technique for bone and cartilage. Biotech Histochem 75:79–84

    PubMed  CAS  Google Scholar 

  • Gemberling M, Bailey TJ, Hyde DR, Poss KD (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29:611–620

    PubMed  CAS  Google Scholar 

  • Gorski JP (1992) Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int 50:391–396

    PubMed  CAS  Google Scholar 

  • Grotek B, Wehner D, Weidinger G (2013) Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development. 140:1412–1423

    PubMed  CAS  Google Scholar 

  • Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K (2005) Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat 287:14–24

    PubMed  Google Scholar 

  • Hata S, Namae M, Nishina H (2007) Liver development and regeneration: from laboratory study to clinical therapy. Develop Growth Differ 49:163–170

    CAS  Google Scholar 

  • Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047

    PubMed  CAS  Google Scholar 

  • Heizmann CW, Fritz G (2009) The family of S100 cell signaling proteins. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signalling, 2nd edn. Academic Press, Oxford, pp 983–994

    Google Scholar 

  • Heizmann CW, Fritz G, Schäfer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    PubMed  CAS  Google Scholar 

  • Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9:853–858

    PubMed  CAS  Google Scholar 

  • Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH (1999) Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14:1075–1083

    PubMed  CAS  Google Scholar 

  • Kärner E, Bäckesjö CM, Cedervall J, Sugars RV, Ahrlund-Richter L, Wendel M (2009) Dynamics of gene expression during bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Biochim Biophys Acta 1790:110–118

    PubMed  Google Scholar 

  • Katogi R, Nakatani Y, Shin-I T, Kohara Y, Inohaya K, Kudo A (2004) Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev 121:861–872

    PubMed  CAS  Google Scholar 

  • Kellermann O, Buc-Caron MH, Marie PJ, Lamblin D, Jacob F (1990) An immortalized osteogenic cell line derived from mouse teratocarcinoma is able to mineralize in vivo and in vitro. J Cell Biol 110:123–132

    PubMed  CAS  Google Scholar 

  • Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724

    PubMed  CAS  Google Scholar 

  • Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86:8927–8931

    PubMed  PubMed Central  CAS  Google Scholar 

  • König D, Page L, Chassot B, Jazwinska A (2018) Dynamics of actinotrichia regeneration in the adult zebrafish fin. Dev Biol 433:416–432

    PubMed  Google Scholar 

  • Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH, Trajanoski Z (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70

    PubMed  PubMed Central  Google Scholar 

  • Laizé V, Pombinho AR, Cancela ML (2005) Characterization of Sparus aurata osteonectin cDNA and in silico analysis of protein conserved features: evidence for more than one osteonectin in Salmonidae. Biochimie 87:411–420

    PubMed  Google Scholar 

  • Laizé V, Viegas CSB, Price PA, Cancela ML (2006) Identification of an Osteocalcin Isoform in Fish with a Large Acidic Prodomain. J Biol Chem 281:15037–15043

  • Lee Y, Hami D, De Val S, Kagermeier-Schenk B, Wills AA, Black BL, Weidinger G, Poss KD (2009) Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev Biol 331:270–280

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marques CL, Rafael MS, Cancela ML, Laizé V (2007) Establishment of primary cell cultures from fish calcified tissues. Cytotechnology 55:9–13

    PubMed  PubMed Central  Google Scholar 

  • Muller TL, Ngo-Muller V, Reginelli A, Taylor G, Anderson R, Muneoka K (1999) Regeneration in higher vertebrates: limb buds and digit tips. Semin Cell Dev Biol 10:405–413

    PubMed  CAS  Google Scholar 

  • Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Develop Growth Differ 49:145–154

    Google Scholar 

  • Nishidate M, Nakatani Y, Kudo A, Kawakami A (2007) Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn 236:2685–2693

    PubMed  CAS  Google Scholar 

  • Nye HL, Cameron JA, Chernoff EA, Stocum DL (2003) Regeneration of the urodele limb: a review. Dev Dyn 226:280–294

    PubMed  Google Scholar 

  • Ogawa R, Mizuno H, Watanabe A, Migita M, Shimada T, Hyakusoku H (2004) Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun 313:871–877

    PubMed  CAS  Google Scholar 

  • Otsuka E, Yamaguchi A, Hirose S, Hagiwara H (1999) Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am J Phys 277:C132–C138

    CAS  Google Scholar 

  • Owlarn S, Klenner F, Schmidt D, Rabert F, Tomasso A, Reuter H, Mulaw MA, Moritz S, Gentile L, Weidinger G, Bartscherer K (2017) Generic wound signals initiate regeneration in missing-tissue contexts. Nat Commun 8:2282

    PubMed  PubMed Central  Google Scholar 

  • Parameswaran V, Laizé V, Gavaia PJ, Cancela ML (2012) ESSA1 embryonic stem like cells from gilthead seabream: a new tool to study mesenchymal cell lineage differentiation in fish. Differentiation 84:240–251

    PubMed  CAS  Google Scholar 

  • Parameswaran V, Cancela ML, Laizé V (2020) Isolation, culture and differentiation of blastema cells from regenerating caudal fin of teleost fish. Fishes 5:6

  • Petrie TA, Strand NS, Yang CT, Rabinowitz JS, Moon RT (2014) Macrophages modulate adult zebrafish tail fin regeneration. Development 141:2581–2591

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pfefferli C, Jaźwińska A (2015) The art of fin regeneration in zebrafish. Regeneration (Oxf) 19:72–83

    Google Scholar 

  • Pfitzner E, Becker P, Rolke A, Schüle R (1995) Functional antagonism between the retinoic acid receptor and the viral transactivator BZLF1 is mediated by protein-protein interactions. Proc Natl Acad Sci U S A 92:12265–12269

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pombinho AR, Laizé V, Molha DM, Marques SM, Cancela ML (2004) Development of two bone-derived cell lines from the marine teleost Sparus aurata; evidence for extracellular matrix mineralization and cell-type-specific expression of matrix Gla protein and osteocalcin. Cell Tissue Res 315:393–406

    PubMed  CAS  Google Scholar 

  • Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210

    PubMed  Google Scholar 

  • Rafael MS, Laizé V, Cancela ML (2006) Identification of Sparus aurata bone morphogenetic protein 2: molecular cloning, gene expression and in silico analysis of protein conserved features in vertebrates. Bone 39:1373–1381

    PubMed  CAS  Google Scholar 

  • Reddy S, Devlin R, Menaa C, Nishimura R, Choi SJ, Dallas M, Yoneda T, Roodman GD (1998) Isolation and characterization of a cDNA clone encoding a novel peptide (OSF) that enhances osteoclast formation and bone resorption. J Cell Physiol 177:636–645

    PubMed  CAS  Google Scholar 

  • Scott JE, Dorling J (1965) Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie 5:221–233

    PubMed  CAS  Google Scholar 

  • Sehring IM, Weidinger G (2019) Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip Rev Dev Biol 14:e367

    Google Scholar 

  • Shakibaei M, Schröter-Kermani C, Merker HJ (1993) Matrix changes during long-term cultivation of cartilage (organoid or high-density cultures). Histol Histopathol 8:463–470

    PubMed  CAS  Google Scholar 

  • Simes DC, Williamson MK, Schaff BJ, Gavaia PJ, Ingleton PM, Price PA, Cancela ML (2004) Characterization of osteocalcin (BGP) and matrix gla protein (MGP) fish specific antibodies: validation for immunodetection studies in lower vertebrates. Calcif Tissue Int 74:170–180

    PubMed  CAS  Google Scholar 

  • Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22:879–886

    PubMed  PubMed Central  CAS  Google Scholar 

  • Slack JM (2003) Regeneration research today. Dev Dyn 226:162–166

    PubMed  CAS  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    PubMed  CAS  Google Scholar 

  • Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, Roehl H, Cancela ML, Jacinto A (2011) Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138:3897–3905

    PubMed  CAS  Google Scholar 

  • Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365:339–349

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21:1292–1315

    PubMed  CAS  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21:a.3B.1–a.3B.2

  • Takuwa Y, Ohse C, Wang EA, Wozney JM, Yamashita K (1991) Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochem Biophys Res Commun 174:96–101

    PubMed  CAS  Google Scholar 

  • Tiago DM, Cancela ML, Aureliano M, Laizé V (2008) Vanadate proliferative and anti-mineralogenic effects are mediated by MAPK and PI-3K/Ras/Erk pathways in a fish chondrocyte cell line. FEBS Lett 582:1381–1385

    PubMed  CAS  Google Scholar 

  • Tiago DM, Laizé V, Bargelloni L, Ferraresso S, Romualdi C, Cancela ML (2011) Global analysis of gene expression in mineralizing fish vertebra-derived cell lines: new insights into anti-mineralogenic effect of vanadate. BMC Genomics 12:310

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tornini VA, Poss KD (2014) Keeping at arm's length during regeneration. Dev Cell 29:139–145

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tornini VA, Puliafito A, Slota LA, Thompson JD, Nachtrab G, Kaushik AL, Kapsimali M, Primo L, Di Talia S, Poss KD (2016) Live monitoring of blastemal cell contributions during appendage regeneration. Curr Biol 26:2981–2991

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tu S, Johnson SL (2011) Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 20:725–732

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valnes K, Brandtzaeq P (1985) Retardation of immunofluorescence during microscopy. J Histochem Cytochem 33:755–761

    PubMed  CAS  Google Scholar 

  • Viegas MN, Dias J, Cancela ML, Laizé V (2012) Polyunsaturated fatty acids regulate cell proliferation, extracellular matrix mineralization and gene expression in a gilthead seabream skeletal cell line. J Appl Ichthyol 28:427–432

    CAS  Google Scholar 

  • Vijayakumar P, Laizé V, Cardeira J, Trindade M, Cancela ML (2013) Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization. Zebrafish 10:500–509

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A 85:9484–9488

    PubMed  PubMed Central  CAS  Google Scholar 

  • Watson CJ, Kwon RY (2015) Osteogenic programs during zebrafish fin regeneration. Bonekey Rep 4:745

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wehner D, Weidinger G (2015) Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet 31:336–343

    PubMed  CAS  Google Scholar 

  • Whitehead GG, Makino S, Lien CL, Keating MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310:1957–1960

    PubMed  CAS  Google Scholar 

  • Yan Q, Sage EH (1999) SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem 47:1495–1506

    PubMed  CAS  Google Scholar 

  • Yoshinari N, Ishida T, Kudo A, Kawakami A (2009) Gene expression and functional analysis of zebrafish larval fin fold regeneration. Dev Biol 325:71–81

    PubMed  CAS  Google Scholar 

  • Yoshizato K (2007) Growth potential of adult hepatocytes in mammals: highly replicative small hepatocytes with liver progenitor-like traits. Develop Growth Differ 49:171–184

    CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71:18–27

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The monoclonal antibodies used in this study were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. We thank Dr. Jorge Dias for providing animals for experiment.

Funding

This work was co-funded by the Portuguese Science and Technology Foundation (FCT) through projects PTDC/MAR/105313/2008 (FISHCELL) and UID/Multi/04326/2019 (CCMAR) and by the European Community (EC) through project ASSEMBLE (FP7/227799). PV was supported by a post-doctoral grant (SFRH/BPD/39189/2007) from the FCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parameswaran Vijayakumar or M. Leonor Cancela.

Ethics declarations

Animal handling and experimentation was performed by qualified operators legally accredited by the Portuguese Direção Geral de Alimentação e Veterinária (DGAV) and following the EU and Portuguese legislation for animal experimentation and welfare (Directive 86/609/CEE and 2010/63/EU, Portaria 1005/92, 466/95 and 1131/97). Experimental procedures were performed under authorization (0421/000/000) from the DGAV, complying with the decreto de lei 113/2013 de 7 de Agosto, from the Portuguese legislation.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Supplementary Fig. 9

Untreated cultures of BSa2 cells. Cells immunolabeled with anti-Osteocalcin 1 antibody (a–d); cells immunolabeled with anti-chondroitin sulphate proteoglycans antibody (e–h); cells immunolabeled with anti-collagen 2 antibody (i-l); Cells labeled with DAPI (blue) (a, e, i); cells labeled with Alexa (red) (b, f, j); DIC image (gray) (c, g, k); merged images of DAPI (blue), Alexa 594 (red) and DIC (gray) (d, h, l). Bar is 10 μm. (PNG 1.51 mb)

High resolution image (TIFF 5.10 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, P., Cardeira, J., Laizé, V. et al. Cells Isolated from Regenerating Caudal Fin of Sparus aurata Can Differentiate into Distinct Bone Cell Lineages. Mar Biotechnol 22, 333–347 (2020). https://doi.org/10.1007/s10126-019-09937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09937-3

Keywords

Navigation