Skip to main content
Log in

Differential Transcriptomic and Metabolomic Responses in the Liver of Nile Tilapia (Oreochromis niloticus) Exposed to Acute Ammonia

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ammonia is toxic to aquatic animal. Currently, only limited works were reported on the responses of aquatic animals after ammonia exposure using “omics” technologies. Tilapia suffers from the stress of ammonia-nitrogen during intensive recirculating aquaculture. Optimizing ammonia stress tolerance has become an important issue in tilapia breeding. The molecular and biochemical mechanisms of ammonia-nitrogen toxicity have not been understood comprehensively in tilapia yet. In this study, using RNA-seq and gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS) techniques, we investigated differential expressed genes (DEGs) and metabolomes in the liver at 6 h post-challenges (6 hpc) and 24 h post-challenges (24 hpc) under high concentration of ammonia-nitrogen treatment. We detected 2258 DEGs at 6 hpc and 315 DEGs at 24 hpc. Functional enrichment analysis indicated that DEGs were significantly associated with cholesterol biosynthesis, steroid and lipid metabolism, energy conservation, and mitochondrial tissue organization. Metabolomic analysis detected 31 and 36 metabolites showing significant responses to ammonia-nitrogen stress at 6 and 24 hpc, respectively. D-(Glycerol 1-phosphate), fumaric acid, and L-malic acid were found significantly down-regulated at both 6 and 24 hpc. The integrative analysis of transcriptomics and metabolomics suggested considerable alterations and precise control of gene expression at both physiological and molecular levels in response to the stress of ammonia-nitrogen in tilapia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht J, Zielinska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol 80:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba H, Zhang XJ, Wolfe RR (1995) Glycerol gluconeogenesis in fasting humans. Nutrition 11:149–153

    CAS  PubMed  Google Scholar 

  • Baldwin JE, Krebs H (1981) The evolution of metabolic cycles. Nature 291:381–382

    Article  CAS  PubMed  Google Scholar 

  • Benli ACK, Koksal G, Ozkul A (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Blajszczak C, Bonini MG (2017) Mitochondria targeting by environmental stressors: implications for redox cellular signaling. Toxicology 391:84–89

    Article  CAS  PubMed  Google Scholar 

  • Bolner KCS, Baldisserotto B (2007) Water pH and urinary excretion in silver catfish Rhamdia quelen. J Fish Biol 70:50–64

    Article  CAS  Google Scholar 

  • Caglan A, Benli K, Koksal G (2005) The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turk J Vet Anim Sci 29:339–344

    Google Scholar 

  • Callis A, Magnan De Bornier B, Serrano JJ, Bellet H, Saumade R (1991) Activity of citrulline malate on acid-base balance and blood ammonia and amino acid levels. Study in the animal and in man. Arzneimittelforschung 41:660–663

    CAS  PubMed  Google Scholar 

  • Chatchaiphan S, Srisapoome P, Kim JH, Devlin RH, Na-Nakorn U (2017) De novo transcriptome characterization and growth-related gene expression profiling of diploid and triploid bighead catfish (Clarias macrocephalus Gunther, 1864). Mar Biotechnol 19:36–48

    Article  CAS  Google Scholar 

  • Cheng CH, Yang FF, Ling RZ, Liao SA, Miao YT, Ye CX, Wang AL (2015) Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat Toxicol 164:61–71

    Article  CAS  PubMed  Google Scholar 

  • Cho SY, Kwon YK, Namb M, Vaidya B, Kim SR, Lee S, Kwon J, Kim D, Hwang GS (2017) Integrated profiling of global metabolomic and transcriptomic responses to viral hemorrhagic septicemia virus infection in olive flounder. Fish Shellfish Immunol 71:220–229

    Article  CAS  PubMed  Google Scholar 

  • Cong M, Wu HF, Cao TF, Lv JS, Wang Q, Ji CL, Li CH, Zhao JM (2018) Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short- and long-term exposures of ammonia nitrogen. Aquat Toxicol 194:121–131

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-Mcintyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, C, H.S.M.H (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Ray S, Nagarajan K (2013) Glutamic acid as anticancer agent: an overview. Saudi Pharm J 21:337–343

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Bassossy HM, Neamatallah T, Balamash KS, Abushareb AT, Watson ML (2018) Arginase overexpression and NADPH oxidase stimulation underlie impaired vasodilation induced by advanced glycation end products. Biochem Biophys Res Commun 499:992–997

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A (2006) Environmental requirements in tilapia culture. CABI Publishing

  • Feng GF, Sun W, Zhang FL, Orlic S, Li ZY (2018) Functional transcripts indicate phylogenetically diverse active ammonia-scavenging microbiota in sympatric sponges. Mar Biotechnol 20:131–143

    Article  CAS  Google Scholar 

  • Foss A, Evensen TH, Vollen T, Oiestad V (2003) Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture 228:215–224

    Article  CAS  Google Scholar 

  • Fu JQ, Shen MH, Shen YW, Lü WG, Huang MQ, Luo X, Yu JJ, Ke CH, You WW (2018) LC-MS/MS-based metabolome analysis of biochemical pathways altered by food limitation in larvae of ivory shell, Babylonia areolata. Mar Biotechnol 20:451–466

    Article  CAS  Google Scholar 

  • Hascilowicz T, Murai N, Matsufuji S, Murakami Y (2002) Regulation of ornithine decarboxylase by antizymes and antizyme inhibitor in zebrafish (Danio rerio). Biochim Biophys Acta 1578:21–28

    Article  CAS  PubMed  Google Scholar 

  • Hegazi MM, Attia ZI, Hegazi MAM, Hasanein SS (2010) Metabolic consequences of chronic sublethal ammonia exposure at cellular and subcellular levels in Nile tilapia brain. Aquaculture 299:149–156

    Article  CAS  Google Scholar 

  • Ip YK, Chew SF, Wilson JM, Randall DJ (2004) Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review. J Comp Physiol B 174:565–575

    CAS  PubMed  Google Scholar 

  • Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF (2005) Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti: brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801. J Exp Biol 208:1993–2004

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Xiong J, Zhou QC, Yuan Y, Wang XX, Sun P (2018) Dietary yeast hydrolysate and brewer's yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol 82:121–129

    Article  CAS  PubMed  Google Scholar 

  • Katsiadaki I, Williams TD, Ball JS, Bean TP, Sanders MB, Wu HF, Santos EM, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Viant MR, Chipman JK (2010) Hepatic transcriptomic and metabolomic responses in the stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. Aquat Toxicol 97:174–187

    Article  CAS  PubMed  Google Scholar 

  • Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemoine CM, Walsh PJ (2013) Ontogeny of ornithine-urea cycle gene expression in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 304:R991–R1000

    Article  CAS  PubMed  Google Scholar 

  • Li M, Gong SY, Li Q, Yuan LX, Meng FX, Wang RX (2016) Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol C 183:1–6

    Google Scholar 

  • Li HL, Gu XH, Li BJ, Chen CH, Lin HR, Xia JH (2017a) Genome-wide QTL analysis identified significant associations between hypoxia tolerance and mutations in the GPR132 and ABCG4 genes in Nile tilapia. Mar Biotechnol (NY) 19:441–453

    Article  CAS  Google Scholar 

  • Li HL, Lin HR, Xia JH (2017b) Differential gene expression profiles and alternative isoform regulations in gill of Nile tilapia in response to acute hypoxia. Mar Biotechnol 19:551–562

    Article  CAS  Google Scholar 

  • Li BJ, Jiang DL, Meng ZN, Zhang Y, Zhu ZX, Lin HR, Xia JH (2018) Genome-wide identification and differentially expression analysis of lncRNAs in tilapia. BMC Genomics 19:729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Cheng L, Xu P, Lu G, Wachholtz M, Sun X, Chen S (2013) Transcriptome analysis of crucian carp (Carassius auratus), an important aquaculture and hypoxia-tolerant species. PLoS One 8:e62308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CK, Wong WP, Lee SM, Chew SF, Ip YK (2004) The ammonotelic African lungfish, Protopterus dolloi, increases the rate of urea synthesis and becomes ureotelic after feeding. J Comp Physiol B 174:555–564

    CAS  PubMed  Google Scholar 

  • Lindley TE, Scheiderer CL, Walsh PJ, Wood CM, Bergman HL, Bergman AL, Laurent P, Wilson P, Anderson PM (1999) Muscle as the primary site of urea cycle enzyme activity in an alkaline lake-adapted tilapia, Oreochromis alcalicus grahami. J Biol Chem 274:29858–29861

    Article  CAS  PubMed  Google Scholar 

  • Loong AM, Hiong KC, Lee SM, Wong WP, Chew SF, Ip YK (2005) Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. J Exp Zool A Comp Exp Biol 303:354–365

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Gimpel JA, Deleeuw GA, Tager JM, Williamson JR (1975) Role of anion translocation across the mitochondrial membrane in the regulation of urea synthesis from ammonia by isolated rat hepatocytes. J Biol Chem 250:7728–7738

    CAS  PubMed  Google Scholar 

  • Nguyen TV, Alfaro AC, Young T, Ravi S, Merien F (2018) Metabolomics study of immune responses of New Zealand greenshell (TM) mussels (Perna canaliculus) infected with pathogenic Vibrio sp. Mar Biotechnol 20:396–409

    Article  CAS  Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV (2004) Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19:313–329

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Rao KVR, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Acuna G, Detree C, Gallardo-Escarate C, Goncalves AT (2017) Functional diets modulate lncRNA-coding RNAs and gene interactions in the intestine of rainbow trout Oncorhynchus mykiss. Mar Biotechnol 19:287–300

    Article  CAS  Google Scholar 

  • Ortiz-Villanueva E, Navarro-Martin L, Jaumot J, Benavente F, Sanz-Nebot V, Pina B, Tauler R (2017) Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach. Environ Pollut 231:22–36

    Article  CAS  PubMed  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. Plos One 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popinigis J, Antosiewicz J, Kaczor JJ, Rauchova H, Lenaz G (2004) Oxidation of glycerol-3-phosphate in porcine and bovine adrenal cortex mitochondria. Acta Biochim Pol 51:1075–1080

    CAS  PubMed  Google Scholar 

  • Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  CAS  PubMed  Google Scholar 

  • Rao PM, Nagamine Y, Roomi MW, Rajalakshmi SR, Sarm DS (1984) Orotic acid, a new promoter for experimental liver carcinogenesis. Toxicol Pathol 12:173–178

    Article  CAS  PubMed  Google Scholar 

  • Reddy PVB, Rao KVR, Norenberg MD (2009) Inhibitors of the mitochondrial permeability transition reduce ammonia-induced cell swelling in cultured astrocytes. J Neurosci Res 87:2677–2685

    Article  CAS  PubMed  Google Scholar 

  • Ren QY, Li M, Yuan LX, Song MZ, Xing XD, Shi G, Meng FX, Wang RX (2016) Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia. Comp Biochem Physiol C 190:9–14

    CAS  Google Scholar 

  • Reue K, Brindley DN (2008) Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 49:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose C (2002) Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release? Metab Brain Dis 17:251–261

    Article  CAS  PubMed  Google Scholar 

  • Shambaugh GE 3rd (1977) Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am J Clin Nutr 30:2083–2087

    Article  CAS  PubMed  Google Scholar 

  • Shiel BP, Hall NE, Cooke IR, Robinson NA, Strugnell JM (2017) Epipodial tentacle gene expression and predetermined resilience to summer mortality in the commercially important greenlip abalone, Haliotis laevigata. Mar Biotechnol 19:191–205

    Article  CAS  Google Scholar 

  • Shinohara M, Kinoshita S, Tang E, Funabara D, Kakinuma M, Maeyama K, Nagai K, Awaji M, Watabe S, Asakawa S (2018) Comparison of two pearl sacs formed in the same recipient oyster with different genetic background involved in yellow pigmentation in Pinctada fucata. Mar Biotechnol 20:594–602

    Article  CAS  Google Scholar 

  • Sinha AK, Giblen T, Abdelgawad H, De Rop M, Asard H, Blust R, De Boeck G (2013) Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat Toxicol 130:86–96

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Soni P, Abdin MZ (2017) Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L. Febs Open Bio 7:367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele SL, Prykhozhij SV, Berman JN (2014) Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 163:79–98

    Article  CAS  PubMed  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  CAS  PubMed  Google Scholar 

  • Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Lu K, Minter EJA, Chen YF, Yang Z, Montagnes DJS (2012) Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J Hazard Mater 221:213–219

    Article  CAS  PubMed  Google Scholar 

  • Szam I, Szentner J, Hegedus-Wein I, Vass A (1972) Effects of arginine malate in experimental and clinical hyperammonemia. Int J Clin Pharmacol 6:260–265

    CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verevkin AN, Zueva NN, Iakovleva VI, Sokolova EN, Golovkina GP (1988) Enzymatic synthesis of L-malic acid from fumaric acid using immobilized Escherichia coli cells. Prikl Biokhim Mikrobiol 24:35–41

    CAS  PubMed  Google Scholar 

  • Visek WJ (1992) Nitrogen-stimulated orotic acid synthesis and nucleotide imbalance. Cancer Res 52:2082s–2084s

    CAS  PubMed  Google Scholar 

  • Wang LF, Zhang Y, Shao M, Zhang HW (2007) Spatiotemporal expression of the creatine metabolism related genes agat, gamt and ct1 during zebrafish embryogenesis. Int J Dev Biol 51:247–253

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Xu F, Wang YZ, Cai ZQ, Yu WC, He C, Jiang QY, Xu XQ, Guo W, Wang XT (2018) The molecular differentiation of anatomically paired left and right mantles of the pacific oyster Crassostrea gigas. Mar Biotechnol 20:425–435

    Article  CAS  Google Scholar 

  • Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730

    Article  CAS  PubMed  Google Scholar 

  • Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol B Biochem Mol Biol 113:665–673

    Article  Google Scholar 

  • William B, Daniel S (2001) Target organ toxicity in marine and freshwater teleosts. Taylor & Francis, London

    Google Scholar 

  • Williams TD, Wu HF, Santos EM, Ball J, Katsiadaki I, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Chipman JK, Viant MR (2009) Hepatic transcriptomic and metabolomic responses in the stickleback (Gasterosteus aculeatus) exposed to environmentally relevant concentrations of dibenzanthracene. Environ Sci Technol 43:6341–6348

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Perry SF, Wright PA, Bergman HL, Randall DJ (1989) Ammonia and urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted to an extremely alkaline environment. Respir Physiol 77:1–20

    Article  CAS  PubMed  Google Scholar 

  • Wright PA (1993) Nitrogen excretion and enzyme pathways for ureagenesis in freshwater tilapia (Oreochromis niloticus). Physiol Zool 66:881–901

    Article  CAS  Google Scholar 

  • Wright P, Felskie A, Anderson P (1995) Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. J Exp Biol 198:127–135

    CAS  PubMed  Google Scholar 

  • Wu HZ, Cao AE (2013) Preparation and adding methods of Nessler's reagent having effects on determination of water quality ammonia nitrogen. Adv Mater Res-Switz 726–731:1362–1366

    Article  Google Scholar 

  • Wu JL, Wu QP, Yang XF, Wei MK, Zhang JM, Huang Q, Zhou XY (2008) L-malate reverses oxidative stress and antioxidative defenses in liver and heart of aged rats. Physiol Res 57:261–268

    CAS  PubMed  Google Scholar 

  • Ye H, Xiao SJ, Wang XQ, Wang ZY, Zhang ZS, Zhu CK, Hu BJ, Lv CH, Zheng SM, Luo H (2018) Characterization of spleen transcriptome of Schizothorax prenanti during Aeromonas hydrophila infection. Mar Biotechnol 20:246–256

    Article  CAS  Google Scholar 

  • Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, Pines O (2010) Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. Plos Biol 8:e1000328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LY, Xu DD, Ye H, Yue HM, Ooka S, Kondo H, Yazawa R, Takeuchi Y (2018) Gonadal transcriptome analysis of Pacific abalone Haliotis discus discus: identification of genes involved in germ cell development. Mar Biotechnol 20:467–480

    Article  CAS  Google Scholar 

  • Yue CY, Li Q, Yu H (2018) Gonad transcriptome analysis of the pacific oyster Crassostrea gigas identifies potential genes regulating the sex determination and differentiation process. Mar Biotechnol 20:206–219

    Article  CAS  Google Scholar 

  • Zhang L, Nawata CM, Wood CM (2013) Sensitivity of ventilation and brain metabolism to ammonia exposure in rainbow trout, Oncorhynchus mykiss. J Exp Biol 216:4025–4037

    Article  CAS  PubMed  Google Scholar 

  • Zimmer AM, Wright PA, Wood CM (2017) Ammonia and urea handling by early life stages of fishes. J Exp Biol 220:3843–3855

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Program of Guangzhou, China (No. 201804020013, 201803020043), the National Natural Science Foundation of China (No. 31572612), and the Science and Technology Planning Project of Guangdong Province, China (2017A030303008).

Author information

Authors and Affiliations

Authors

Contributions

JHX and HRL contributed to project conception. Experiment and data analysis were conducted by ZXZ, DLJ, BJL, HQ, and ZNM. The manuscript was prepared by JHX and ZXZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Hong Xia.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

qRT-PCR validation of the differential expression profiles for the randomly selected DEGs in liver samples after ammonia-nitrogen treatment. Ef1a was used as reference gene. All expression values for each selected DEG were normalized to the values of the gene in the liver samples of the control group. The bars indicated the mean value for three biological replicates. Significant level: *, p < 0.05 and **, p < 0.01 (PNG 522 kb)

High-resolution image (TIF 802 kb)

Supplementary Figure 2

qRT-PCR validation of the differential expression profiles for the DEGs in the “cholesterol biosynthesis” pathway. Ef1a was used as reference gene. All expression values for each selected DEG were normalized to the values of the gene in the liver samples of the control group. The bars indicated the mean value for three biological replicates. Significant level: *, p < 0.05 and **, p < 0.01 (PNG 537 kb)

High-resolution image (TIF 685 kb)

Supplementary Table 1

The qRT PCR primer list for evaluation of the gene expression profiles in the liver samples (XLSX 14 kb)

Supplementary Table 2

The summary information for the DEGs at 6 hpc identified in the liver samples in response to acute ammonia-nitrogen stress (XLSX 284 kb)

Supplementary Table 3

The summary information for the DEGs at 24 hpc identified in the liver samples in response to acute ammonia-nitrogen stress (XLSX 49 kb)

Supplementary Table 4

The summary information for the common DEGs at 6 and 24 hpc identified in the liver samples in response to acute ammonia-nitrogen stress (XLSX 33 kb)

Supplementary Table 5

Functional annotation of the DEGs identified in the liver samples at 6 hpc in response to acute ammonia-nitrogen stress (XLSX 111 kb)

Supplementary Table 6

Functional annotation of the DEGs identified in the liver samples at 24 hpc in response to acute ammonia-nitrogen stress (XLSX 38 kb)

Supplementary Table 7

Functional annotation of the overlapped DEGs identified in the liver samples at 6 and 24 hpc in response to acute ammonia-nitrogen stress (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z.X., Jiang, D.L., Li, B.J. et al. Differential Transcriptomic and Metabolomic Responses in the Liver of Nile Tilapia (Oreochromis niloticus) Exposed to Acute Ammonia. Mar Biotechnol 21, 488–502 (2019). https://doi.org/10.1007/s10126-019-09897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09897-8

Keywords

Navigation