Skip to main content
Log in

Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Considering the global trend in the search for alternative natural compounds with antioxidant and sun protection factor (SPF) boosting properties, bacterial carotenoids represent an opportunity for exploring pigments of natural origin which possess high antioxidant activity, lower toxicity, no residues, and no environmental risk and are readily decomposable. In this work, three pigmented bacteria from the Antarctic continent, named Arthrobacter agilis 50cyt, Zobellia laminarie 465, and Arthrobacter psychrochitiniphilus 366, were able to withstand UV-B and UV-C radiation. The pigments were extracted and tested for UV absorption, antioxidant capacity, photostability, and phototoxicity profile in murine fibroblasts (3T3 NRU PT–OECD TG 432) to evaluate their further potential use as UV filters. Furthermore, the pigments were identified by ultra-high-performance liquid chromatography–photodiode array detector–mass spectrometry (UPLC-PDA-MS/MS). The results showed that all pigments presented a very high antioxidant activity and good stability under exposure to UV light. However, except for a fraction of the A. agilis 50cyt pigment, they were shown to be phototoxic. A total of 18 different carotenoids were identified from 23 that were separated on a C18 column. The C50 carotenes bacterioruberin and decaprenoxanthin (including its variations) were confirmed for A. agilis 50cyt and A. psychrochitiniphilus 366, respectively. All-trans-bacterioruberin was identified as the pigment that did not express phototoxic activity in the 3T3 NRU PT assay (MPE < 0.1). Zeaxanthin, β-cryptoxanthin, β-carotene, and phytoene were detected in Z. laminarie 465. In conclusion, carotenoids identified in this work from Antarctic bacteria open perspectives for their further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agogué H, Joux F, Obernosterer I, Lebaron P (2005) Resistance of marine bacterioneuston to solar radiation. Appl Environ Microbiol 71:5282–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpin N, Fiasson JL, Norgård S et al (1975) Bacterial carotenoids, XLVI. C50-carotenoids, 14. C50-carotenoids from Arthrobacter glacialis. Acta Chem Scand B 29:921–926

    Article  CAS  PubMed  Google Scholar 

  • Augustin C, Collombel C, Damour O (1997) Use of dermal equivalent and skin equivalent models for identifying phototoxic compounds in vitro. Photodermatol Photoimmunol Photomed 13:27–36

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV et al (1997) Diversity and association of psychrophilic bacteri in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT -Food Sci Technol 28:25–30

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Britton G, Pfander H, Liaaen-Jensen S (2004) Carotenoids handbook. Birkhäuser Verlag, Basel Boston

  • Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251

    Article  CAS  PubMed  Google Scholar 

  • Caspar JV, Meyer TJ (1983) Application of the energy gap law to excited-state decay. J Phys Chem 87:952–957

    Article  CAS  Google Scholar 

  • Casteliani AGB, Kavamura VN, Zucchi TD et al (2014) UV-B resistant yeast inhabit the Phyllosphere of strawberry. Br Microbiol Res J 4:1105–1117

    Article  Google Scholar 

  • Ceridono M, Tellner P, Bauer D, Barroso J, Alépée N, Corvi R, de Smedt A, Fellows MD, Gibbs NK, Heisler E, Jacobs A, Jirova D, Jones D, Kandárová H, Kasper P, Akunda JK, Krul C, Learn D, Liebsch M, Lynch AM, Muster W, Nakamura K, Nash JF, Pfannenbecker U, Phillips G, Robles C, Rogiers V, van de Water F, Liminga UW, Vohr HW, Wattrelos O, Woods J, Zuang V, Kreysa J, Wilcox P (2012) The 3T3 neutral red uptake phototoxicity test: practical experience and implications for phototoxicity testing - the report of an ECVAM-EFPIA workshop. Regul Toxicol Pharmacol 63:480–488

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54

    Article  CAS  PubMed  Google Scholar 

  • Delpino-Rius A, Eras J, Marsol-Vall A, Vilaró F, Balcells M, Canela-Garayoa R (2014) Ultra performance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J Chromatogr A 1331:90–99

    Article  CAS  PubMed  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42:396–405

    Article  Google Scholar 

  • ECVAM DB-ALM (2008) 3T3 Neutral Red Uptake (NRU) phototoxicity assay. DB-ALM Protocol n ° 78, pp 1–19

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34(4):329–323

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong NJC, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756

    Article  CAS  PubMed  Google Scholar 

  • Freitas JV, Gaspar LR (2016) In vitro photosafety and efficacy screening of apigenin, chrysin and beta-carotene for UVA and VIS protection. Eur J Pharm Sci 89:146–153

    Article  CAS  PubMed  Google Scholar 

  • Freitas JV, Lopes NP, Gaspar LR (2015) Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. Eur J Pharm Sci 78:79–89

    Article  CAS  PubMed  Google Scholar 

  • Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13:6226–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar LR, Maia Campos PMBG (2006) Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm 307:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli A, Nardini M, Baldi A, Scaccini C (1998) Antioxidant activity of different phenolic fractions separated from an Italian red wine. J Agric Food Chem 46:361–367

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida D, Sutthiwong N, Dugo P et al (2016) Characterisation of the C50 carotenoids produced by strains of the cheese-ripening bacterium Arthrobacter arilaitensis. Int Dairy J 55:10–16

  • González MT, Fumagalli F, Benevenuto CG et al (2017) Novel benzophenone-3 derivatives with promising potential as UV filters: relationship between structure, photoprotective potential and phototoxicity. Eur J Pharm Sci 101:200–210

    Article  CAS  PubMed  Google Scholar 

  • González-Toril E, Amils R, Delmas RJ, Petit JR, Komárek J, Elster J (2008) Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes). Biogeosci Discuss 5:1607–1630

    Article  Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, London

  • Hartwig VG, Brumovsky LA, Fretes RM, Boado LS (2012) A novel procedure to measure the antioxidant capacity of Yerba maté extracts. Food Sci Technol 32:126–133

    Article  Google Scholar 

  • Heider SAE, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF (2014) Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg S, Jensen SL (1966) The carotenoids of blue-green algae—II. Phytochemistry 5:565–570

    Article  CAS  Google Scholar 

  • Hojerová J, Medovcíková A, Mikula M (2011) Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. Int J Pharm 408:27–38

    Article  CAS  PubMed  Google Scholar 

  • Holzhütter HG (1997) A general measure of in vitro phototoxicity derived from pairs of dose-response curves and its use for predicting the in vivo phototoxicity of chemicals. ATLA Altern Lab Anim 25:445–462

    Google Scholar 

  • Horneck G (1995) Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. Planet Space Sci 43:189–217

    Article  CAS  PubMed  Google Scholar 

  • ICH (1996) Photostability Testing of New Drug Substances and Products Q1B, International Conference on Harmonisation, IFPMA, Geneva

  • Jagannadham MV, Narayanan K, Mohan Rao C, Shivaji S (1996) In vivo characteristics and localisation of carotenoid pigments in psychrotrophic and mesophilic Micrococcus roseus using photoacoustic spectroscopy. Biochem Biophys Res Commun 227:221–226

    Article  CAS  PubMed  Google Scholar 

  • Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Mohan Rao C, Shivaji S (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173:418–424

    Article  CAS  PubMed  Google Scholar 

  • Karentz D (1991) Ecological considerations of antarctic ozone depletion. Antarct Sci 3:3–11

    Article  Google Scholar 

  • Kejlová K, Jírová D, Bendová H, Kandárová H, Weidenhoffer Z, Kolářová H, Liebsch M (2007) Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human patch tests. Toxicol In Vitro 21:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Kleinig H, Heumann W, Meister W, Englert G (1977) Carotenoids of rhizobia. I. New carotenoids from rhizobium lupini. Helv Chim Acta 60:254–258.

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman KR, Allenbach LB, Ball CL, Fusco WG, la Duc MT, Kuhlman GM, Anderson RC, Stuecker T, Erickson IK, Benardini J, Crawford RL (2005) Enumeration, isolation, and characterization of ultraviolet (UV-C) resistant bacteria from rock varnish in the Whipple Mountains, California. Icarus 174:585–595

    Article  CAS  Google Scholar 

  • Kushwaha SC, Pugh EL, Kramer JKG, Kates M (1972) Isolation and identification of dehydrosqualene and C40-carotenoid pigments in Halobacterium cutirubrum. Biochim Biophys Acta Lipids Lipid Metab 260:492–506

    Article  CAS  Google Scholar 

  • Le K, Chiu F, Ng K (2007) Identification and quantification of antioxidants in Fructus lycii. Food Chem 105:353–363

    Article  CAS  Google Scholar 

  • Link L, Sawyer J, Venkateswaran K, Nicholson W (2004) Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb Ecol:159–163

  • Maciel OMC, Tavares RSN, Caluz DRE, Gaspar LR, Debonsi HM (2018) Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. J Photochem Photobiol B Biol 178:316–322

    Article  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles, from Biodiversity to Biotechnology. Springer, Berlin

  • Mathews MM, Sistrom WR (1959) Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893

    Article  CAS  PubMed  Google Scholar 

  • Mathews-Roth MM (1987) Photoprotection by carotenoids. Fed Proc 46:1890–1893

    CAS  PubMed  Google Scholar 

  • Mohana D, Thippeswamy S, Abhishek R (2013) Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiat Prot Environ 36:168

    Article  Google Scholar 

  • Myers JA, Curtis BS, Curtis WR (2013) Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen K-H, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30:1490–1508

    Article  CAS  PubMed  Google Scholar 

  • Nupur LNU, Vats A, Dhanda SK, Raghava GPS, Pinnaka AK, Kumar A (2016) ProCarDB: a database of bacterial carotenoids. BMC Microbiol 16:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (2004) OECD guidelines for the testing of chemicals. Test:1–21. https://doi.org/10.1787/9789264203785-en

  • Pettijohn D, Hanawalt P (1964) Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J Mol Biol 9:395–410

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  CAS  PubMed  Google Scholar 

  • Rattray FP, Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J Dairy Sci 82:891–909

    Article  CAS  PubMed  Google Scholar 

  • Roos JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:118–125

    Article  Google Scholar 

  • Saito T, Miyabe Y, Ide H, Yamamoto O (1997) Hydroxyl radical scavenging ability of bacterioruberin. Radiat Phys Chem 50:267–269

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin - a review. Compr Rev Food Sci Food Saf:29–49

  • Scherer S, Chen TW, Böger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88:1055–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316(Pt 1):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaath N (2007) SPF boosters & photostability of ultraviolet filters. Happi 10:77–83

  • Shahmohammadi HR, Asgarani E, Terato H et al (1997) Effects of co-60 gamma-rays, ultraviolet-light, and mitomycin-c on halobacterium-salinarium and thiobacillus-intermedius. J Radiat Res 38:37–43

    Article  CAS  PubMed  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H et al (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262

    Article  CAS  PubMed  Google Scholar 

  • Silva TR, Duarte AWF, Passarini MRZ, Ruiz ALTG, Franco CH, Moraes CB, de Melo IS, Rodrigues RA, Fantinatti-Garboggini F, Oliveira VM (2018) Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 41:1505–1519

    Article  Google Scholar 

  • Spielmann H, Balls M, Dupuis J, Pape WJ, Pechovitch G, de Silva O, Holzhütter HG, Clothier R, Desolle P, Gerberick F, Liebsch M, Lovell WW, Maurer T, Pfannenbecker U, Potthast JM, Csato M, Sladowski D, Steiling W, Brantom P (1998) The international EU/COLIPA in vitro phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU phototoxicity test. Toxicol In Vitro 12:305–327

    Article  CAS  PubMed  Google Scholar 

  • Stafsnes MH, Josefsen KD, Kildahl-Andersen G, Valla S, Ellingsen TE, Bruheim P (2010) Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J Microbiol 48:16–23

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, Patil SV (2015) Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci 37:98–107

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2014) General methods for identification of carotenoids. Biotechnol Lett 36:1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Shimada K, Ishidsu J (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153:118–122

    Article  CAS  Google Scholar 

  • Uchino O, Bojkov RD, Balis DS, Akagi K, Hayashi M, Kajihara R (1999) Essential characteristics of the Antarctic-spring ozone decline: update to 1998. Geophys Res Lett 26:1377–1380

    Article  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    Article  CAS  Google Scholar 

  • Wagener S, Völker T, De Spirt S et al (2012) 3,3′-Dihydroxyisorenieratene and isorenieratene prevent UV-induced DNA damage in human skin fibroblasts. Free Radic Biol Med 53:457–463

    Article  CAS  PubMed  Google Scholar 

  • Whitehead K, Hedges JI (2005) Photodegradation and photosensitization of mycosporine-like amino acids. J Photochem Photobiol B Biol 80:115–121

    Article  CAS  Google Scholar 

  • Wright DL, Whitehead CR, Sessions EH, Ghiviriga I, Frey DA (1999) Studies on inducers of nerve growth factor: synthesis of the cyathin core. Org Lett 1:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2002) Environmental UV radiation: biological strategies for protection and avoidance. Astrobiol Quest Cond Life:245–260

  • Wynn-Williams DD, Newton EM, Edwards HGM (2001) The role of habitat structure for biomolecule integrity and microbial survival under extreme environmental stress in Antarctica (and Mars?): ecology and technology. In Exo-/astro-biology (vol 496. pp. 225-237)

  • Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhu B, Nakamura Y et al (2008) Structure-dependent photodegradation of carotenoids accelerated by dimethyl tetrasulfide under UVA irradiation. Biosci Biotechnol Biochem 72(8):2176–2183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP for financial funding (process numbers 2014/17936-1, 2016/05640-6, and 2017/21790-0). The MycoAntar Project (CNPq) and the Brazilian Antarctic Program are also acknowledged for making the sampling feasible in the OPERANTAR XXXIII (summer 2014/2015) and OPERANTAR XXXIV (summer 2015/2016). We also would like to thank Dr. Marcos Eberlin and Dr. Fabio Neves from ThoMSon Mass Spectrometry Laboratory in UNICAMP for the analytical chemistry training.

Funding

This study was funded by the São Paulo Research Foundation–FAPESP (grant numbers 2014/17936-1, 2016/05640-6, and 2017/21790-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago R. Silva.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 3665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.R., Tavares, R.S.N., Canela-Garayoa, R. et al. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. Mar Biotechnol 21, 416–429 (2019). https://doi.org/10.1007/s10126-019-09892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09892-z

Keywords

Navigation