Skip to main content
Log in

Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A screening among marine yeasts was carried out for nitrile hydrolyzing activity. Meyerozyma guilliermondii LM2 (UBOCC-A-214008) was able to efficiently grow on benzonitrile and cyclohexanecarbonitrile (CECN) as sole nitrogen sources. A two-step one-pot method for obtaining cells of M. guilliermondii LM2 (UBOCC-A-214008) endowed with high nitrilase activity was established; the resulting whole cells converted different nitriles with high molar conversions and showed interesting enantioselectivity toward racemic substrates. Nitrilase from M. guilliermondii LM2 (UBOCC-A-214008) displayed high activity on aromatic substrates, but also arylaliphatic and aliphatic substrates were accepted. Salt-resistant M. guilliermondii LM2 (UBOCC-A-214008) was used in media with different salinity, being highly active up to 1.5 M NaCl concentration. Finally, hydrolysis of nitriles was efficiently performed using a bioprocess (yeast growth and biotransformation with resting cells) entirely carried out in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson NG (2012) Solvent selection. In: Anderson NG (ed) Practical processes & development-a guide for organic chemists, 2nd edn. Academic Press, Oxford, pp 121–168

    Chapter  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Brewis EA, Van Der Walt JP, Prior BA (1995) The utilization of aromatic, cyclic and heterocyclic nitriles by yeasts. Syst Appl Microbiol 18:338–342

    Article  CAS  Google Scholar 

  • Burgaud G, Hue NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Chi Z, Zhang T, Liu G, Li J, Wang X (2009) Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 27:236–225

    Article  CAS  Google Scholar 

  • de Oliveira JR, Mizuno CM, Seleghim MH, Javaroti DC, Rezende MO, Landgraf MD, Sette LD, Porto AL (2013) Biotransformation of phenylacetonitrile to 2- hydroxyphenylacetic acid by marine fungi. Mar Biotechnol 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • De Vitis V, Guidi B, Contente ML Granato T, Conti P, Molinari F, Crotti E, Mapelli F, Borin S Daffonchio D, Romano D (2015) Marine microorganisms as source of stereoselective esterases and ketoreductases: kinetic resolution of a prostaglandin intermediate. Mar Biotechnol 17:144–152

    Article  CAS  PubMed  Google Scholar 

  • Debabov VG, Yanenko AS (2011) Biocatalytic hydrolysis of nitriles. Rev J Chem 1:385–402

    Article  Google Scholar 

  • Dias JCT, Rezende RP, Rosa CA, Lachance M, Linardi VR (2000) Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65. Can J Microbiol 46:525–531

    Article  CAS  PubMed  Google Scholar 

  • Domínguez de María P (2013) On the use of seawater as reaction media for large-scale applications in biorefineries. ChemCatChem 5:1643–1648

    Article  CAS  Google Scholar 

  • Gong J, Lu Z, Li H, Shi J, Zhou Z, Xu Z (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142

    Article  CAS  Google Scholar 

  • He Y, Xu J, Su J, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol. https://doi.org/10.1016/S0141-0229(98)00076-3

  • Kaplan O, Vejvoda V, Charvátová-Pinvejcová A, Martínková L (2006) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol. https://doi.org/10.1016/j.cbpa.2009.11.018

  • Martínková L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K, Křen V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  CAS  PubMed  Google Scholar 

  • Meth-Cohn O, Wang M (1997) Rationalisation of the regioselective hydrolysis of aliphatic dinitriles with Rhodococcus rhodochrous AJ270. Chem Commun 0:1041–1042

    Article  CAS  Google Scholar 

  • Mukherjee C, Zhu D, Biehl ER, Hua L (2006) Exploring the synthetic applicability of a cyanobacterium nitrilase as catalyst for nitrile hydrolysis. Eur J Org Chem. https://doi.org/10.1002/ejoc.200600699

  • O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol 95:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Petrícková A, Sosedov O, Baum S, Stolz A, Martínková L (2012) Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2012.01.005

  • Rédou V, Navarri M, Meslet-Cadière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezende RP, Dias JCT, Rosa CA, Carazza F, Linardi VR (1999) Utilization of nitriles by yeasts isolated from a Brazilian gold mine. J Gen Appl Microbiol 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Rustler S, Chmura A, Sheldon RA, Stolz A (2008) Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acidotolerant black yeast Exophiala oligosperma R1. Stud Mycol 61:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra I, Guidi B, Burgaud G, Contente ML, Ferraboschi P, Pinto A, Compagno C, Molinari F, Romano D (2016) Seawater-based biocatalytic strategy: stereoselective reductions of ketones with marine yeasts. ChemCatChem. https://doi.org/10.1002/cctc.201600947

  • Spizzo P, Basso A, Ebert C, Gardossi L, Ferrario V, Romano D, Molinari F (2007) Resolution of (R,S)-flurbiprofen catalysed by dry mycelia in organic solvent. Tetrahedron 63:11005–11010

    Article  CAS  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejvoda V, Kaplan O, Klozová J, Masák J, Cejková A, Jirku V, Stloukal R, Martínková L (2006) Mild hydrolysis of nitriles by Fusarium solani strain O1. Folia Microbiol 51:251–256

    Article  CAS  Google Scholar 

  • Yamamoto K, Oishi K, Fujimatsu I, Komatsu K (1991) Production of R-(−)-Mandelic acid from Mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambelli P, Serra I, Fernandez-Arrojo L, Plou FJ, Tamborini L, Conti P, Contente ML, Molinari F, Romano D (2015) Sweet-and-salty biocatalysis: fructooligosaccharides production using Cladosporium cladosporioides in seawater. Process Biochem 50:1086–1090

    Article  CAS  Google Scholar 

  • Zhang XH, Liu ZQ, Xue YP, Xu M, Zheng YG (2016) Nitrilase-catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase. Biotechnol Appl Biochem 63:479–448

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Gong J, Dong T, Liu T, Li H, Dou W, Lu Z, Shi J, Xu Z (2017) Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-017-1754-6

Download references

Acknowledgements

The authors acknowledge G. Burgaud (University of Brest) for kindly providing the yeast strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immacolata Serra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, I., Capusoni, C., Molinari, F. et al. Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii. Mar Biotechnol 21, 229–239 (2019). https://doi.org/10.1007/s10126-019-09875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09875-0

Keywords

Navigation