Skip to main content

Advertisement

Log in

Expression Profile Analysis of miR-221 and miR-222 in Different Tissues and Head Kidney Cells of Cynoglossus semilaevis, Following Pathogen Infection

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Half-smooth tongue sole (Cynoglossus semilaevis) is an important marine commercial fish species in China, which suffers from widespread disease outbreaks. Recently, in this regard, our group identified immune-related microRNAs (miRNAs) of C. semilaevis following Vibrio anguillarum infection. Furthermore, miRNA microarray was utilized to characterize the immune roles of important miRNA candidates in response to bacterial infection. Therefore, in the present study, we characterized miR-221 and miR-222 and profiled their expression after challenge. Here, miR-221 and miR-222 precursors were predicted to have a typical hairpin structure. Both miRNAs were expressed in a broad range of tissues in C. semilaevis, while miR-221 and miR-222 were significantly differentially expressed in the immune tissues of C. semilaevis among three small RNA libraries [control group (CG), bacteria-challenged fish without obvious symptoms of infection (NOSG), and bacteria-challenged fish with obvious symptoms of infection (HOSG)]. In order to further characterize and understand the immune response of miR-221 and miR-222, therefore, we profiled miR-221 and miR-222 expression in selected immune tissues after challenge with V. anguillarum. Both miR-221 and miR-222 were upregulated in the liver and spleen, while different expression patterns were observed in the head kidney. In addition, in half-smooth tongue sole head kidney cell line after challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), peptidoglycan (PGN), and red-spotted grouper nervous necrosis virus (RGNNV), both miR-221 and miR-222 showed significant difference in expression response to pathogen. Meanwhile, the target gene of miR-221 and miR-222 was predicted, which indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 beta (IL-1β) were the target genes of miR-221 and miR-222, respectively. Collectively, these findings indicated that miR-221 and miR-222 have putative roles in innate immune response during C. semilaevis exposure to pathogens. Our findings could expand the knowledge of immune function of C. semilaevis miRNA and guide future studies on C. semilaevis immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen F, Du Y, Zhang Z, Chen G, Zhang M, Shu H-B, Zhai Z, Chen D (2008) Syntenin negatively regulates TRAF6-mediated IL-1R/TLR4 signaling. Cell Signal 20:666–674

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff J-N (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46(3):253–260

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Du L, Shi Q, Jiao H, Zhang X, Hao Y, Rong H, Zhang J, Jia X, Guo S (2013) Identification of miR-221 and-222 as important regulators in genotype IV swine hepatitis E virus ORF3-expressing HEK 293 cells. Virus Genes 47:49–55

    Article  PubMed  CAS  Google Scholar 

  • Dinarello C (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20:S1–S13

    PubMed  CAS  Google Scholar 

  • Eguía-Aguilar P, Pérezpeña-Díazconti M, Benadón-Darszon E, De León FC-P, Gordillo-Domínguez L, Torres-García S, Sadowinski-Pine S, Arenas-Huertero F (2014) Reductions in the expression of miR-124-3p, miR-128-1, and miR-221-3p in pediatric astrocytomas are related to high-grade supratentorial, and recurrent tumors in Mexican children. Childs Nerv Syst 30:1173–1181

    Article  PubMed  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP (2008) The promyelocytic leukemia zinc finger–microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754

    Article  PubMed  CAS  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724

    Article  PubMed  CAS  Google Scholar 

  • Galardi S, Mercatelli N, Farace MG, Ciafre SA (2011) NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39:3892–3902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host–virus interaction. Nucleic Acids Res 37:1035–1048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gong G, Sha Z, Chen S, Li C, Yan H, Chen Y, Wang T (2015) Expression profiling analysis of the microRNA response of Cynoglossus semilaevis to Vibrio anguillarum and other stimuli. Mar Biotechnol (NY) 17:338–52

    Article  CAS  Google Scholar 

  • Gonzalez SF, Buchmann K, Nielsen ME (2007) Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: inflammatory responses caused by the ectoparasite Ichthyophthirius multifiliis. Fish Shellfish Immunol 22:641–650

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  • Jeong S, Cho I-R, An WG, Jhun BH, Lee B, Park K, Chung Y-H (2007) STP-A11, an oncoprotein of Herpesvirus saimiri augments both NF-κB and AP-1 transcription activity through TRAF6. Exp Mol Med 39:56–64

    Article  PubMed  Google Scholar 

  • Jiao Y, Zheng Z, Du X, Wang Q, Huang R, Deng Y, Shi S, Zhao X (2014) Identification and characterization of microRNAs in pearl oyster Pinctada martensii by Solexa deep sequencing. Mar Biotechnol 16:54–62

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Spillane C (2015) Reduction in carotenoid levels in the marine diatom Phaeodactylum tricornutum by artificial microRNAs targeted against the endogenous phytoene synthase gene. Mar Biotechnol (NY) 17:1–7

    Article  CAS  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  PubMed  CAS  Google Scholar 

  • Kong YW, Ferland-Mccollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13:e249–e258

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA (2007) Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang Y, Yu W, Chen J, Luo J (2011) Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun 406:70–73

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ji J, Xie Q, Shang H, Zhang H, Xin X, Chen F, Sun B, Xue C, Ma J (2012) Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res 169:268–271

    Article  PubMed  CAS  Google Scholar 

  • Lian L, Qu L, Chen Y, Lamont SJ, Yang N (2012) A systematic analysis of miRNA transcriptome in Marek’s disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS One 7:e51003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104:476–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu D-Q, Bei J-X, Feng L-N, Zhang Y, Liu X-C, Wang L, Chen J-L, Lin H-R (2008) Interleukin-1β gene in orange-spotted grouper, Epinephelus coioides: molecular cloning, expression, biological activities and signal transduction. Mol Immunol 45:857–867

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Zhao P, Zhang C, Fu Z, Chen Y, Lu A, Liu N, You Y, Pu P, Kang C (2009) Analysis of miR-221 and p27 expression in human gliomas. Mol Med Rep 2:651–656

    PubMed  CAS  Google Scholar 

  • Medina R, Zaidi SK, Liu C-G, Stein JL, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pauley KM, Chan EK (2008) MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci 1143:226–239

    Article  PubMed  CAS  Google Scholar 

  • Poubelle PE, Chakravarti A, Fernandes MJ, Doiron K, Marceau A (2007) Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res Ther 9:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao R, Nagarkatti P, Nagarkatti M (2015) Role of miRNA in the regulation of inflammatory genes in staphylococcal enterotoxin B-induced acute inflammatory lung injury and mortality. Toxicol Sci 144(2):284–297

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    Article  PubMed  CAS  Google Scholar 

  • Salem M, Xiao C, Womack J, Rexroad Iii CE, Yao J (2010) A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 12:410–429

    Article  PubMed  CAS  Google Scholar 

  • Schnitger AK, Machova A, Mueller RU, Androulidaki A, Schermer B, Pasparakis M, Krönke M, Papadopoulou N (2011) Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS One 6:e27435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sha Z, Wang S, Zhuang Z, Wang Q, Li P, Ding H, Wang N, Liu Z, Chen S (2010) Generation and analysis of 10 000 ESTs from the half-smooth tongue sole Cynoglossus semilaevis and identification of microsatellite and SNP markers. J Fish Biol 76:1190–1204

    Article  PubMed  CAS  Google Scholar 

  • Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S (2014) Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. Dev Comp Immunol 44:59–69

    Article  PubMed  CAS  Google Scholar 

  • Shen W-J, Dong R, Chen G, Zheng S (2014) MicroRNA-222 modulates liver fibrosis in a murine model of biliary atresia. Biochem Biophys Res Commun 446:155–159

    Article  PubMed  CAS  Google Scholar 

  • Shmaryahu A, Carrasco M, Valenzuela P (2014) Prediction of bacterial microRNAs and possible targets in human cell transcriptome. J Microbiol (Seoul, Korea) 52:482–489

    CAS  Google Scholar 

  • Škugor A, Slanchev K, Torgersen JS, Tveiten H, Andersen (2014) Conserved mechanisms for germ cell-specific localization of nanos3 transcripts in teleost species with aquaculture significance. Mar Biotechnol 16:256–264

    Article  PubMed  Google Scholar 

  • Spahn M, Kneitz S, Scholz CJ, Stenger N, Rüdiger T, Ströbel P, Riedmiller H, Kneitz B (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127:394–403

    PubMed  CAS  Google Scholar 

  • Stinson S, Lackner MR, Adai AT, Yu N, Kim H-J, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T (2011) TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4:ra41

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J-K (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103:12481–12486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teleman AA, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20:417–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Torrecillas S, Makol A, Caballero M, Montero D, Dhanasiri A, Sweetman J, Izquierdo M (2012) Effects on mortality and stress response in European sea bass, Dicentrarchus labrax (L.), fed mannan oligosaccharides (MOS) after Vibrio anguillarum exposure. J Fish Dis 35:591–602

    Article  PubMed  CAS  Google Scholar 

  • Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, Liedberg F, Chebil G, Gudjonsson S, Borg (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124:2236–2242

    Article  PubMed  CAS  Google Scholar 

  • Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791–798

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Shen C, Kang C (2011) Adenovirus-mediated shRNAs for co-repression of miR-221 and miR-222 expression and function in glioblastoma cells. Oncol Rep 25:97–105

    PubMed  Google Scholar 

  • Wurz K, Garcia RL, Goff BA, Mitchell PS, Lee JH, Tewari M, Swisher EM (2010) MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosom Cancer 49:577–584

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao B, Liu Z, Li B-S, Tang B, Li W, Guo G, Shi Y, Wang F, Wu Y, Tong W-D (2009) Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 200:916–925

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Xiang J, Lu Y, Chen Y, Wang T, Gong G, Wang L, Li X, Chen S, Sha Z (2015) sghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities. Dev Comp Immunol 48:151–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Guan G, Chen J, Naruse K, Hong Y (2014) Parameters and efficiency of direct gene disruption by zinc finger nucleases in medaka embryos. Mar Biotechnol 16:125–134

    Article  PubMed  CAS  Google Scholar 

  • Zhao J-J, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptorα and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283:31079–31086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao P, Zhao L, Zhang T, Wang H, Qin C, Yang S, Xia X (2012) Changes in microRNA expression induced by rabies virus infection in mouse brains. Microb Pathog 52:47–54

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Wang N, Xie M-S, Sha Z-X, Chen S-L (2012) Establishment and characterization of a new fish cell line from head kidney of half-smooth tongue sole (Cynoglossus semilaevis). Fish Physiol Biochem 38:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Hu G, Liu J, Gong A-Y, Drescher KM, Chen X-M (2009) NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 5:e1000681

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31172439) and the State 863 High-Technology R&D Project of China (2012AA10A401-4) and by the Taishan Scholar Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxia Sha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Chen, Y., Zhou, S. et al. Expression Profile Analysis of miR-221 and miR-222 in Different Tissues and Head Kidney Cells of Cynoglossus semilaevis, Following Pathogen Infection. Mar Biotechnol 18, 37–48 (2016). https://doi.org/10.1007/s10126-015-9668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9668-2

Keywords

Navigation