Skip to main content
Log in

Desmodesmus sp. 3Dp86E-1—a Novel Symbiotic Chlorophyte Capable of Growth on Pure CO2

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A novel chlorophyte Desmodesmus sp. 3Dp86E-1 isolated from a White Sea hydroid Dynamena pumila was cultivated at CO2 levels from atmospheric (the ‘low-CO2’ conditions) to pure carbon dioxide (the 5, 20, and 100 % CO2 conditions) under high (480 μE/(m2 s) PAR) light. After 7 days of cultivation, the ‘100 % CO2’ (but not 5 or 20 % CO2) cells possessed ca. four times higher chlorophyll content per dry weight (DW) unit than the low-CO2 culture. The rate of CO2 fixation under 100 % CO2 comprised ca. 1.5 L/day per L culture volume. After a lag period which depended on the CO2 level, biomass accumulation and volumetric fatty acid (FA) content of the Desmodesmus sp. 3Dp86E-1 bubbled with CO2-enriched gas mixtures increased and was comparable to that of the culture continuously bubbled with air. Under the low-to-moderate CO2 conditions, the FA percentage of the algal cells increased (to 40 % DW) whereas under high-CO2 conditions, FA percentage did not exceed 15 % DW. A strong increase in oleate (18:1) proportion of total FA at the expense of linolenate (18:3) was recorded in the ‘100 % CO2’ cells. Electron microscopy and pulse–amplitude-modulated chlorophyll fluorescence investigation revealed no damage to or significant downregulation of the photosynthetic apparatus in ‘100 % CO2’ cells grown at the high-PAR irradiance. Possible mechanisms of high-CO2 tolerance of Desmodesmus sp. 3Dp86E-1 are discussed in view of its symbiotic origin and possible application for CO2 biomitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baba M, Shiraiwa Y (2012) High-CO2 response mechanisms in microalgae. In: Najafpour M (ed) Advances in photosynthesis—fundamental aspects. InTech, Rijeka, pp 299–320

    Google Scholar 

  • Bumba L, Vácha F (2003) Electron microscopy in structural studies of Photosystem II. Photosynth Res 77(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  PubMed  Google Scholar 

  • Gorelova O, Kosevich I, Baulina O, Fedorenko T, Torshkhoeva A, Lobakova E (2009) Associations between the White Sea invertebrates and oxygen-evolving phototrophic microorganisms. Mosc Univ Biol Sci Bull 64(1):16–22

    Article  Google Scholar 

  • Gorelova O, Baulina O, Solovchenko A, Fedorenko T, Kravtsova T, Chivkunova O, Koksharova O, Lobakova E (2012) Green microalgae from associations with White Sea invertebrates. Microbiology (Mikrobiologiya) 81(4):505–507

    Article  CAS  Google Scholar 

  • Gorelova O, Baulina OI, Kosevich I, Lobakova E (2013) Associations between the White Sea colonial hydroid Dynamena pumila and microorganisms. J Mar Biol Assoc UK 93:69–80

    Article  Google Scholar 

  • Kupriyanova E, Pronina N (2011) Carbonic anhydrase: enzyme that has transformed the biosphere. Russ J Plant Physiol 58(2):197–209

    Article  CAS  Google Scholar 

  • López J, Quijano G, Souza TO, Estrada J, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97(6):2277–2303

    Article  PubMed  Google Scholar 

  • Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77(2):139–153

    Article  CAS  PubMed  Google Scholar 

  • Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    Article  CAS  Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36(6):693–696

    Article  CAS  Google Scholar 

  • Satoh A, Kurano N, Senger H, Miyachi S (2002) Regulation of energy balance in photosystems in response to changes in CO2 concentrations and light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant Cell Physiol 43(4):440–451

    Article  CAS  PubMed  Google Scholar 

  • Seckbach J, Baker FA, Shugarman PM (1970) Algae thrive under pure CO2. Nature 227(5259):744–745

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett 35(11):1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Solovchenko O, Khozin-Goldberg I, Didi-Cohen S, Pal D, Cohen C, Boussiba S (2013a) Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae). Algal Res 2(3):175–182

    Article  Google Scholar 

  • Solovchenko A, Chivkunova O, Semenova L, Selyakh I, Shcherbakov P, Karpova E, Lobakova E (2013b) Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. isolated from a White Sea hydroid. Russ J Plant Physiol 60(3):313–321

    Article  CAS  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Microbiol Mol Biol Rev 35:171–205

    CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of the Russian Scientific Fund (contract # 14-14-000131) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovchenko, A., Gorelova, O., Selyakh, I. et al. Desmodesmus sp. 3Dp86E-1—a Novel Symbiotic Chlorophyte Capable of Growth on Pure CO2 . Mar Biotechnol 16, 495–501 (2014). https://doi.org/10.1007/s10126-014-9572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9572-1

Keywords

Navigation