Skip to main content
Log in

Isolation and Characterization of Antifreeze Proteins from the Antarctic Marine Microalga Pyramimonas gelidicola

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) play an important role in the psychrophilic adaptation of polar organisms. AFPs encoded by an Antarctic chlorophyte, identified as Pyramimonas gelidicola, were isolated and characterized. Two AFP isoforms were found from cDNAs and their deduced molecular weights were estimated to be 26.4 kDa (Pg-1-AFP) and 27.1 kDa (Pg-2-AFP). Both AFP cDNAs were cloned and expressed in Escherichia coli. The purified recombinant Pg-1-rAFP and Pg-2-rAFP both showed antifreeze activity based on the measurement of thermal hysteresis (TH) and morphological changes to single ice crystals. Pg-1-rAFP shaped ice crystals into a snowflake pattern with a TH value of 0.6 ± 0.02 °C at ~15 mg/ml. Single ice crystals in Pg-2-rAFP showed a dendritic morphology with a TH value of 0.25 ± 0.02 °C at the same protein concentration. Based on in silico protein structure predictions, the three-dimensional structures of P. gelidicola AFPs match those of their homologs found in fungi and bacteria. They fold as a right-handed β-helix flanked by an α-helix. Unlike the hyperactive insect AFPs, the proposed ice-binding site on one of the flat β-helical surfaces is neither regular nor well-conserved. This might be a characteristic of AFPs used for freeze tolerance as opposed to freeze avoidance. A role for P. gelidicola AFPs in freeze tolerance is also consistent with their relatively low TH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL (1999) New ice-binding face for type I antifreeze protein. FEBS Lett 463:87–91

    Article  CAS  PubMed  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Bell EM, Laybourn-Parry J (2003) Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol 39:644–649

    Article  Google Scholar 

  • Boonsupthip W, Lee T (2003) Application of antifreeze protein for food preservation: effect of type III antifreeze protein for preservation of gel-forming of frozen and chilled actomyosin. J Food Sci 68:1804–1809

    Article  CAS  Google Scholar 

  • Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice: Part I. Extracellular DNA. Polar Biol 34:1819–1830

    Article  Google Scholar 

  • Delano WL (2002) The PyMol molecular graphics system, version 1.3. Schrodinger, LLC

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+ dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411:171–180

    Article  CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored chlathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci U S A 108:7363–7367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gwak IG, Jung W, Kim HJ, Kang SH, Jin ES (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hoshino T, Tronsmo AM, Matsumoto N, Araki T, Georges F, Goda T, Ohgiya S, Ishizaki K (1998) Freezing resistance among isolates of a psychrophilic fungus, Typhula ishikariensis, from Norway. Proc NIPR Symp Polar Biol 11:112–118

    Google Scholar 

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    Article  CAS  Google Scholar 

  • Jung W, Lee SG, Kang SW, Lee YS, Lee JH, Kang SH, Jin ES, Kim HJ (2012) Analysis of expressed sequence tags from the Antarctic psychrophilic green algae, Pyramimonas gelidicola. J Microbiol Biotechnol 22:902–906

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Raymond JA (2004) Reduction of freeze–thaw-induced hemolysis of red blood cells by an algal ice-binding protein. CryoLetters 25:307–311

    CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kiko R (2009) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556

    Article  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109:9360–9365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koushafar H, Pham L, Rubinsky B (1997) Chemical adjuvant cryosurgery with antifreeze proteins. J Surg Oncol 66:114–121

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B 357:863–869

    Article  CAS  Google Scholar 

  • Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from Arctic yeast. J Biol Chem 287:11460–11468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lund O, Nielsen M, Lundegaard C, Worning P (2002) CPHmodels 2.0: X3M — a computer program to extract 3D models. CASP5 conference

  • Marchant HJ (2005) Prasinophytes, Antarctic marine protists. Eds. Scott FJ, Marchant HJ, Australian biological resources study. Australian Antarctic Division, Canberra & Hobart

  • Marshall CB, Daley ME, Graham LA, Sykes BD, Davies PL (2002) Identification of the ice-binding face of antifreeze protein from Tenebrio molitor. FEBS Lett 529:261–267

    Article  CAS  PubMed  Google Scholar 

  • Middleton A, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10:1–6

    Article  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0 — remote homology modeling using structure guided sequence profiles. Nucleic Acids Res 38:w576–w581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  Google Scholar 

  • Priddle J, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Article  Google Scholar 

  • Raymond JA (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci U S A 108:E198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Janech MG (2009) Ice-binding proteins from enoki and shiitake mushrooms. Cryobiology 58:151–156

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:e35968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  • Saunders GW, Kraft GT (1994) Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta): I. Evidence for the Plocamiales ord. nov. Can J Bot 72:1250–1263

    Article  CAS  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239

    Article  CAS  PubMed  Google Scholar 

  • Smallwood M, Bowles DJ (2002) Plants in a cold climate. Philos Trans Biol Sci 357:831–847

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  CAS  Google Scholar 

  • Uhlig C, Kabisch J, Palm GJ, Valentin K, Schweder T, Krell A (2011) Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 63:220–228

    Google Scholar 

  • Yang DSC, Hon WC, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F (1998) Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. Biophys J 74:2142–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agenda Project from the Korea Research Council of Fundamental Science and Technology (KRCF) and the Korea Polar Research Institute (KOPRI) (Grant No. PG12010). This work was supported by a Korea CCS R&D Center (KCRC) grant funded by the Korean government (Ministry of Science, ICT and Future Planning). PLD holds a Canada Research Chair in Protein Engineering and acknowledges research support from the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hak Jun Kim or EonSeon Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Information on amino acid sequences of Pg-AFPs including the signal peptides. Signal peptides are predicted by SignalP v4.0 (Peterson et al. 2011) and indicated by bold, underlined residues. Asterisks indicate stop codons (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, W., Gwak, Y., Davies, P.L. et al. Isolation and Characterization of Antifreeze Proteins from the Antarctic Marine Microalga Pyramimonas gelidicola . Mar Biotechnol 16, 502–512 (2014). https://doi.org/10.1007/s10126-014-9567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9567-y

Keywords

Navigation