Skip to main content
Log in

Biotransformation of Methylphenylacetonitriles by Brazilian Marine Fungal Strain Aspergillus sydowii CBMAI 934: Eco-friendly Reactions

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This study reports the biotransformation of methylphenylacetonitriles by Brazilian marine filamentous fungus Aspergillus sydowii CBMAI 934 under eco-friendly reaction conditions. The phenylacetonitrile 1, 2-methylphenylacetonitrile 2, 3-methylphenylacetonitrile 3, and 4-methylphenylacetonitrile 4 were quantitatively biotransformed into 2-hydroxyphenylacetic 1a, 2-methylphenylacetic acid 2a, 3-methylphenylacetic acid 3a, and 4-methylphenylacetic acid 4a by enzymatic processes using whole cell as biocatalyst. The marine fungus A. sydowii CBMAI 934 is thus a promising biocatalyst for the preparation of important carboxylic acids under mild conditions (pH 7.5 and 32 °C) from nitrile compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baiocchi L, Giannangeli M (1979) Aromatization of aliphatic compounds, o- and m-tolylacetic acids. Tetrahedron Lett 46:4499–4500

    Article  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Beeton A, Zeevaart J, Kgaje C, Rantwijk E, Sheldon RA (2004) Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–37

    CAS  PubMed  Google Scholar 

  • Comasseto JV, Assis LF, Andrade LH, Schoenlein-Crusius IH, Porto ALM (2006) Biotransformations of ortho-, meta- and para-aromatic nitrocompounds by strains of Aspergillus terreus: reduction of ketones and deracemization of alcohols. J Mol Catal B Enzym 39:24–30

    Article  CAS  Google Scholar 

  • De Oliveira JR, Seleghim MHR, Javaroti DCD, Sette LD, Porto ALM (2013) Biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid by marine fungi. Mar Biotechnol 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142–169

    Article  CAS  Google Scholar 

  • Gupta V, Gaind S, Verma PK, Sood N, Srivastava AK (2010) Purification and characterization of intracellular nitrilases from Rhodococcus sp. potential role of periplasmic nitrilases. Afr J Microbiol Res 4:1148–1153

    CAS  Google Scholar 

  • He YC, Xu JH, Su JH, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Heinemann U, Kiziak C, Zibek S, Layh N, Schmidt M, Griengl H, Stolz A (2003) Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 63:274–281

    Article  CAS  PubMed  Google Scholar 

  • Howden A, Preston GM (2009) Nitrilase enzymes and their role in plant–microbe interactions. Microbiol Biotechnol 2:441–451

    Article  CAS  Google Scholar 

  • Jin L-Q, Liu Z-Q, Xu J-M, Zheng Y-G (2013) Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150. World J Microbiol Biotechnol 29:431–440

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Vejvoda V, Plihal O, Pompach P, Kavan D, Bojarová P, Bezouska K, Macková M, Cantarella M, Jirku V, Kren V, Martinková L (2006a) Purification and characterization of a nitrilases from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Nikolaou K, Pisvejcová A, Martinková L (2006b) Hydrolysis of nitriles and amides by filamentous fungi. Enzym Microb Technol 38:260–264

    Article  CAS  Google Scholar 

  • Kielbasinski P, Rachwalski M, Mikolajczyk M, Rutjes FPJT (2008) Nitrilase-catalysed hydrolysis of cyanomethyl p-tolyl sulfoxido: stereochemistry and mechanism. Tetrahedron Asymmetry 19:562–567

    Article  CAS  Google Scholar 

  • Li P, Alper H (1986) Poly(ethylene glycol) promoted reactions of vinylic dibromides dehydrohalogenation and palladium(0)-catalyzed formal oxidative homologation. J Org Chem 51:4354–4356

    Article  CAS  Google Scholar 

  • Martínkova L, Vejvoda V, Kren V (2008) Selection and screening for enzymes of nitrile metabolism. J Biotechnol 133:318–326

    Article  PubMed  Google Scholar 

  • Martínkova L, Vejvoda V, Kaplan O, Kren V, Bezouska K, Cantarella M (2009a) Modern biocatalysis: stereoselective and environmentally friendly reactions. Wiley, Weinheim

    Google Scholar 

  • Martínkova L, Vejvoda V, Kaplan O, Kubac D, Malandra A, Cantarella M, Bezouska K, Kren V (2009b) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  PubMed  Google Scholar 

  • O'Reilly C, Turner PD (2003) The nitrilase family of CN hydrolyzing enzymes–a comparative study. J Appl Microbiol 95:1161–1174

    Article  PubMed  Google Scholar 

  • Petrícková A, Veselá AB, Kaplan O, Kubac D, Uhnáková B, Malandra A, Felsberg J, Rinágelová A, Weyrauch P, Kren V, Bezouska K, Martínková L (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 93:1553–1561

    Article  PubMed  Google Scholar 

  • Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Seleghim MHR, Javaroti DCD, Sette LD, Bonugli RC, Porto ALM (2009) Bioreduction of alphachloroacetophenone by whole cells of marine fungi. Biotechnol Lett 31:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Rocha LC, Rosset IG, Rodrigo FL, Raminelli C, Porto ALM (2010) Kinetic resolution of iodophenylethanols by Candida antarctica lipase and their application for the synthesis of chiral biphenyl compounds. Tetrahedron-Asymmetry 21:926–929

    Article  CAS  Google Scholar 

  • Rocha LC, Rodrigo FL, Rosset IG, Raminelli C, Porto ALM (2012) Bioconversion of iodoacetophenones by marine fungi. Mar Biotechnol 14:396–401

    Article  CAS  PubMed  Google Scholar 

  • Snajdrova R, Kristova-Mylerova V, Crestia D, Nikolaou K, Kuzma M, Lemaire M, Gallienne E, Bolte J, Karel B, Vladimir K, Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

    Article  Google Scholar 

  • Van Der Stelt C, Harms AF, Nauta WTH (1961) The effect of alkylsubstitution in drugs. V. Synthesis and chemical properties of some dibenzo [a, d]1,4-cycloheptadienyl ethers. J Med Pharmaceut Chem 4:335–349

    Article  CAS  Google Scholar 

  • Vita-Marques AM, Lira SP, Berlinck RGS, Seleghim MHR, Sponchiado SRP, Tornisielo SMT, Barata AM, Pessoa AC, Moraes MO, Cavalcanti BC, Nascimento GGF, Souza AO, Galetti FCS, Silva CL, Silva M, Pimenta EF, Thiemann O, Passarini MRZ, Sette LD (2008) A multi-screening approach for marine-derived fungal metabolites and the isolation of cyclodepsipeptides from Beauveria felina. Quim Nova 31:1–5

    Article  Google Scholar 

  • Winkler M, Kaplan O, Vejvoda V, Klempier N, Martínková L (2009) Biocatalytic application of nitrilases from Fusarium solani O1 and Aspergillus niger K10. J Mol Catal B Enzym 59:243–247

    Article  CAS  Google Scholar 

  • Zhen YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  Google Scholar 

  • Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA 110 gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. R.G.S. Berlinck (Instituto de Química de São Carlos—USP) for collecting the sponge Chelonaplysilla erecta. We also acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. We also thank FAPESP for the scholarship grant to JRO. The authors also wish to thank Professor Leandro Helgueira Andrade (IQ/USP, São Paulo, Brazil) for donating the 2-methylphenylacetonitrile 2, 3-methylphenylacetonitrile 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Meleiro Porto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 358 kb)

ESM 2

(DOC 8069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, J.R., Seleghim, M.H.R. & Porto, A.L.M. Biotransformation of Methylphenylacetonitriles by Brazilian Marine Fungal Strain Aspergillus sydowii CBMAI 934: Eco-friendly Reactions. Mar Biotechnol 16, 156–160 (2014). https://doi.org/10.1007/s10126-013-9534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9534-z

Keywords

Navigation