Skip to main content
Log in

Immobilization and Characterization of a Thermostable Lipase

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (±2.4) nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Amagliani G, Omiccioli E, Campo A, Bruce I, Brandi G, Magnani M (2006) Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J Appl Microbiol 100:375–383

    Article  CAS  PubMed  Google Scholar 

  • Antranikian G (2008) Immobilization and characterization of a thermostable lipase. In: Robb F, Antranikian G, Grogan D, Driessen A (eds) Thermophiles: biology and technology at high temperatures. CRC, Boca Raton, pp 113–160

  • Bai S, Guo Z, Liu W, Sun Y (2006) Resolution of (±)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chem 96:1–7

    Article  CAS  Google Scholar 

  • Bai Y, Li Y, Lei L (2009) Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization. Appl Microbiol Biotechnol 83:457–464

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49:326–346

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Li Y, Yang Y, Liu X, Lei L, Zhou L, Pan F (2010) Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J Biotechnol 150:171–174

    Article  CAS  PubMed  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • Dong J, Xu Z, Wang F (2008) Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl Surf Sci 254:3522–3530

    Article  CAS  Google Scholar 

  • du Plessis EM, Berger E, Stark T, Louw ME, Visser D (2010) Characterization of a novel thermostable esterase from Thermus scotoductus SA-01: evidence of a new family of lipolytic esterases. Curr Microbiol 60:248–253

    Article  CAS  PubMed  Google Scholar 

  • Falahati M, Ma’mani L, Saboury AA, Shafiee A, Foroumadi A, Badiei AR (2011) Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. Biochim Biophys Acta Proteins Proteomics 1814:1195–1201

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212

    Article  CAS  Google Scholar 

  • Fuciños P, Abadín C, Sanromán A, Longo M, Pastrana L, Rúa M (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241

    Article  PubMed  Google Scholar 

  • Fuciños P, Pastrana L, Sanromán A, Longo M, Hermoso J, Rúa M (2011) An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: purification, characterisation and structural modelling. J Mol Catal B Enzym 70:127–137

    Article  Google Scholar 

  • Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553

    Article  CAS  PubMed  Google Scholar 

  • Hotta Y, Ezaki S, Atomi H, Imanaka T (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68:3925–3931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes SR, Moser BR, Robinson S, Cox EJ, Harmsen AJ, Friesen JA, Bischoff KM, Jones MA, Pinkelman R, Bang SS, Tasaki K, Doll KM, Qureshi N, Liu S, Saha BC, Jackson JS, Cotta MA, Rich JO, Caimi P (2012) Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. J Biotechnol 159:69–77

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kim KD, Kim SS, Choa YH, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 13:1137–1141

    CAS  Google Scholar 

  • Lei L, Bai Y, Li Y, Yi L, Yang Y, Xia C (2009) Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J Magn Magn Mater 321:252–258

    Article  CAS  Google Scholar 

  • Levisson M, Van Der Oost J, Kengen SWM (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Ji X, Zhou Z, Wang Y, Zhang X (2010) Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation. J Proteome Res 9:855–864

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Google Scholar 

  • López E, Alonso B, Deive FJ, Sanromán M, Longo MA (2011) On the hyperthermostability of lipolytic enzymes from Thermus aquaticus YT-1: exploring their application to polymer degradation. J Chem Technol Biotechnol 86:838–844

    Article  Google Scholar 

  • Lucena R, Simonet B, Cárdenas S, Valcárcel M (2011) Potential of nanoparticles in sample preparation. J Chromatogr A 1218:620–637

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167

    Article  CAS  PubMed  Google Scholar 

  • Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85–86:71–92

    Article  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Okuda H (1991) Esterases. In: (ed) IKS (ed) A study of enzymes. CRC Press, Boca Raton, FL, pp 563–577

  • Oshima T, Kazutomo I (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112

    Article  CAS  Google Scholar 

  • Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169

    Article  CAS  PubMed  Google Scholar 

  • Rafiee-Pour HA, Noorbakhsh A, Salimi A, Ghourchian H (2010) Sensitive superoxide biosensor based on silicon carbide nanoparticles. Electroanalysis 22:1599–1606

    Article  CAS  Google Scholar 

  • Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    Article  CAS  PubMed  Google Scholar 

  • Saiyed Z, Sharma S, Godawat R, Telang S, Ramchand C (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244

    Article  CAS  PubMed  Google Scholar 

  • Salimi A, Noorbakhsh A, Rafiee–Pour HA, Ghourchian H (2011) Direct voltammetry of copper, zinc-superoxide dismutase immobilized onto electrodeposited nickel oxide nanoparticles: fabrication of amperometric superoxide biosensor. Electroanalysis 23:683–691

    CAS  Google Scholar 

  • Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Song C, Sheng L, Zhang X (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96:123–132

    Article  CAS  PubMed  Google Scholar 

  • Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villalonga R, Cao R, Fragoso A, Damiao AE, Ortiz PD, Caballero J (2005) Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. J Mol Catal B Enzym 35:79–85

    Article  CAS  Google Scholar 

  • Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev 107:3088–3116

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg 34:890–896

    Article  CAS  Google Scholar 

  • Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118:132–138

    Article  CAS  PubMed  Google Scholar 

  • Yong Y, Bai Y, Li Y, Lin L, Cui Y, Xia C (2008a) Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J Magn Magn Mater 320:2350–2355

    Article  CAS  Google Scholar 

  • Yong Y, Bai YX, Li YF, Lin L, Cui YJ, Xia CG (2008b) Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem 43:1179–1185

    Article  CAS  Google Scholar 

  • Zheng MM, Dong L, Lu Y, Guo PM, Deng QC, Li WL, Feng YQ, Huang FH (2012) Immobilization of Candida rugosa lipase on magnetic poly (allyl glycidyl ether-co-ethylene glycol dimethacrylate) polymer microsphere for synthesis of phytosterol esters of unsaturated fatty acids. J Mol Catal B Enzym 74:16–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by China Ocean Mineral Resources R&D Association (DY125-15-E-01), the Project of State Oceanic Administration, China (201205020–3), Hi-Tech Research and Development Program of China (2012AA092103-5), and the Natural Science Foundation of Anhui Provincial University (KJ2013Z256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangquan Sheng or Xiaobo Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Sheng, L. & Zhang, X. Immobilization and Characterization of a Thermostable Lipase. Mar Biotechnol 15, 659–667 (2013). https://doi.org/10.1007/s10126-013-9515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9515-2

Keywords

Navigation