Skip to main content
Log in

Role of Hypoxia-Inducible Factor α in Response to Hypoxia and Heat Shock in the Pacific Oyster Crassostrea gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Pacific oyster Crassostrea gigas inhabits the intertidal zone and shows tolerance to stress conditions such as hypoxia and heat shock. Although some information is available about the genes expressed in response to hypoxia, little is known about the molecular mechanism of the regulation of their expression in mollusks, including the Pacific oyster. Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of hypoxia-responsive transcription. In this study, we cloned HIF-α from the oyster and investigated its response to unique stress conditions, including air exposure, for the first time in mollusks. The cDNA of oyster Hif-α is 3,182 bp long, of which 2,094 bp encodes a protein of 698 amino acid residues. Northern and Western blot analysis showed that expression of oyster HIF-α mRNA and protein were induced by air exposure, and that expression was induced periodically during air exposure. In addition, induction of Hif-α mRNA increased by a maximum 8.0-fold by heat shock. Under heat shock at 35°C (lethal temperature for the oyster), however, it was induced later than at 30°C. After recovery from hypoxia and/or heat shock, Hif-α mRNA also upregulated. These data suggest that the oyster has a strategy to induce Hif-α mRNA in order to survive hypoxia and heat shock, and that HIF signaling is necessary for recovery from stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Appelhoff RJ, Tian Y-M, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  PubMed  CAS  Google Scholar 

  • Bacchiocchi S, Principato G (2000) Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis. J Exp Zool 286:107–113

    Article  PubMed  CAS  Google Scholar 

  • Baird NA, Turnbull DW, Johnson EA (2006) Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem 281:38675–38681

    Article  PubMed  CAS  Google Scholar 

  • Ballantyne JS (2004) Mitochondria: aerobic and anaerobic design—lessons from molluscs and fishes. Comp Biochem Physiol B 139:461–467

    Article  PubMed  Google Scholar 

  • BelAiba RS, Bonello S, Zähringer C, Schmidt S, Hess J, Kietzmann T, Görlach A (2007) Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Mol Biol Cell 18:4691–4697

    Article  PubMed  CAS  Google Scholar 

  • Berra E, Ginouvés A, Pouysségur J (2006) The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signaling. EMBO Rep 7:41–45

    Article  PubMed  CAS  Google Scholar 

  • Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 8:76–85

    Article  PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Pouysségur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  PubMed  CAS  Google Scholar 

  • Buckley BA, Owen M-E, Hofmann GE (2001) Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 204:3571–3579

    PubMed  CAS  Google Scholar 

  • Cherkasov AA, Overton RA Jr, Sokolov EP, Sokolova IM (2007) Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation. J Exp Biol 210:46–55

    Article  PubMed  CAS  Google Scholar 

  • David E, Tanguy A, Pichavant K, Moraga D (2005) Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J 272:5635–5652

    Article  PubMed  CAS  Google Scholar 

  • Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian Y-M, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF-3α. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  • Heidbreder M, Fröhlich F, Jöhren O, Dendorfer A, Qadri F, Dominiak P (2003) Hypoxia rapidly activates HIF-3α mRNA expression. FASEB J 17:1541–1543

    PubMed  CAS  Google Scholar 

  • Hewitson KS, McNeil LA, Riordan MV, Tian Y-M, Bullock AN, Welford RW, Elikins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ (2002) Hypoxia-inducible factor (HIF) asparagines hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B 130:435–459

    Article  PubMed  CAS  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DJ, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–978

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhao Q, Mooney SM, Lee FS (2002) Sequence determinants in hypoxia-inducible factor-1α for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 277:39792–39800

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell S, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  • Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15:1312–1314

    PubMed  CAS  Google Scholar 

  • Jiang H, Guo R, Powell-Coffman JA (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98:7916–7921

    Article  PubMed  CAS  Google Scholar 

  • Jokumsen A, Fyhn HJ (1982) The influence of aerial exposure upon respiratory and osmotic properties of haemolymph from two intertidal mussels, Mytilus edulis L. and Modiolus modiolus L. J Exp Mar Biol Ecol 61:189–203

    Article  CAS  Google Scholar 

  • Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible fator-1α. EMBO J 17:6573–6586

    Article  PubMed  CAS  Google Scholar 

  • Kamat CD, Thorpe JE, Shenoy SS, Ceriello A, Green DE, Warnke LA, Ihnat MA (2007) A long-term "memory" of HIF induction in response to chronic mild decreased oxygen after oxygen normalization. BMC Cardiovasc Disord 7:4

    Article  PubMed  Google Scholar 

  • Kawabe S, Yokoyama Y (2009) cDNA cloning and expression of grp94 in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B 154:290–297

    Article  PubMed  Google Scholar 

  • Kawabe S, Yokoyama Y (2010) Molecular cloning of calnexin and calreticulin in the Pacific oyster Crassostrea gigas and its expression in response to air exposure. Mar Genomics 3:19–27

    Article  PubMed  Google Scholar 

  • Kawabe S, Takada M, Shibuya R, Yokoyama Y (2010) Biochemical changes in oyster tissues and hemolymph during long-term air exposure. Fish Sci 76:841–855

    Article  CAS  Google Scholar 

  • Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K (2001) Perivenous expression of the mRNA of the three hypoxia-inducible factor α-subunits, HIF-1α, HIF-2α and HIF-3α, in rat liver. Biochem J 354:531–537

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    Article  PubMed  CAS  Google Scholar 

  • Lang KJD, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287

    Article  PubMed  CAS  Google Scholar 

  • Larade K, Storey KB (2002) A profile of metabolic responses to anoxia in marine invertebrates. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaptation. Elsevier, Amsterdam, pp 27–46

    Chapter  Google Scholar 

  • Law SHW, Wu RSS, Ng PKS, Yu RMK, Kong RYC (2006) Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7:15

    Article  PubMed  Google Scholar 

  • Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36:1–12

    PubMed  Google Scholar 

  • Li T, Brouwer M (2007) Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: molecular characterization and response to hypoxia. Comp Biochem Physiol B 147:11–19

    Article  PubMed  Google Scholar 

  • Linke S, Stojkoski C, Kewley RJ, Booker GW, Whitelaw ML (2004) Substrate requirements of the oxygen-sensing asparaginyl hydroxylase factor-inhibiting hypoxia-inducible factor. J Biol Chem 279:14391–14397

    Article  PubMed  CAS  Google Scholar 

  • Liu F-T, Zinnecker M, Hamaoka T, Katz DH (1979) New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry 18:690–697

    Article  PubMed  CAS  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  PubMed  CAS  Google Scholar 

  • Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  • Michaelidis B, Haas D, Grieshaber MK (2005) Extracellular and intracellular acid–base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol Biochem Zool 78:373–383

    Article  PubMed  CAS  Google Scholar 

  • Moullac GL, Bacca H, Huvet A, Moal J, Pouvreau S, Wormhoudt AV (2007) Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia. J Exp Zool 307A:371–382

    Article  Google Scholar 

  • Nambu JR, Chen W, Hu S, Crews ST (1996) The Drosophila melanogaster similar bHLH-PAS gene encodes a protein related to human hypoxia-inducible factor 1α and Drosophila single-minded. Gene 172:249–254

    Article  PubMed  CAS  Google Scholar 

  • Pagé EL, Robitaille GA, Pouysségur J, Richard D (2002) Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J Biol Chem 277:48403–48409

    Article  PubMed  Google Scholar 

  • Piano A, Asirelli C, Caselli F, Fabbri E (2002) Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chaperones 7:250–257

    Article  PubMed  CAS  Google Scholar 

  • Piano A, Franzelliti S, Tinti F, Fabbri E (2005) Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361:119–126

    Article  PubMed  CAS  Google Scholar 

  • Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  PubMed  Google Scholar 

  • Rahman MS, Thomas P (2007) Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1α and HIF-2α, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene 396:273–282

    Article  PubMed  CAS  Google Scholar 

  • Richard DE, Berra E, Gothié E, Roux D, Pouysségur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637

    Article  PubMed  CAS  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Schulte PM (2004) Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B 139:519–529

    Article  PubMed  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Life with oxygen. Science 318:62–64

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Semenza GL, Roth PH, Fang H-M, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    PubMed  CAS  Google Scholar 

  • Soitamo AJ, Råbergh CMI, Gassmann M, Sistonen L, Nikinmaa M (2001) Characterization of a hypoxia-inducible factor (HIF-1α) from rainbow trout. J Biol Chem 276:19699–19705

    Article  PubMed  CAS  Google Scholar 

  • Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    Article  PubMed  CAS  Google Scholar 

  • Stolze IP, Tian Y-M, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM, Ratcliffe PJ (2004) Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J Biol Chem 279:42719–42725

    Article  PubMed  CAS  Google Scholar 

  • Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DAH, Bauer C, Gassmann M, Candinas D (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    PubMed  CAS  Google Scholar 

  • Tian H, Mcknight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  • Treinin M, Shliar J, Jiang H, Powell-Coffman JA, Bromberg Z, Horowitz M (2003) HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol Genomics 14:17–24

    PubMed  CAS  Google Scholar 

  • Tuckerman JR, Zhao Y, Hewitson KS, Tian Y-M, Pugh CW, Ratcliffe PJ, Mole DR (2004) Determination and comparison of specific activity of the HIF-prolyl hydroxylases. FEBS Lett 576:145–150

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518

    PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  • Widdows J, Bayne BL, Livingstone DR, Newell RIE, Donkin P (1979) Physiological and biochemical responses of bivalve mollusks to exposure to air. Comp Biochem Physiol A 62:301–308

    Article  Google Scholar 

  • Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 98:9630–9635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for JSPS Fellows (218563) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawabe, S., Yokoyama, Y. Role of Hypoxia-Inducible Factor α in Response to Hypoxia and Heat Shock in the Pacific Oyster Crassostrea gigas . Mar Biotechnol 14, 106–119 (2012). https://doi.org/10.1007/s10126-011-9394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9394-3

Keywords

Navigation