Skip to main content
Log in

Shrimp Molecular Responses to Viral Pathogens

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

From almost negligible amounts in 1970, the quantity of cultivated shrimp (∼3 million metric tons in 2007) has risen to approach that of the capture fishery and it constitutes a vital source of export income for many countries. Despite this success, viral diseases along the way have caused billions of dollars of losses for shrimp farmers. Desire to reduce the losses to white spot syndrome virus in particular, has stimulated much research since 2000 on the shrimp response to viral pathogens at the molecular level. The objective of the work is to develop novel, practical methods for improved disease control. This review covers the background and limitations of the current work, baseline studies and studies on humoral responses, on binding between shrimp and viral structural proteins and on intracellular responses. It also includes discussion of several important phenomena (i.e., the quasi immune response, viral co-infections, viral sequences in the shrimp genome and persistent viral infections) for which little or no molecular information is currently available, but is much needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai H-S, Huang Y-C, Li S-D, Weng S-P, Yu X-Q, He J-G (2008) Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is down-regulated by white spot syndrome virus. Fish Shellfish Immunol 25:28–39

    PubMed  CAS  Google Scholar 

  • Ai H-S, Liao J-X, Huang X-D, Yin Z-X, Weng S-P, Zhao Z-Y, Li S-D, Yu X-Q, He J-G (2009) A novel prophenoloxidase 2 exists in shrimp hemocytes. Dev Comp Immunol 33:59–68

    PubMed  CAS  Google Scholar 

  • Andrade TPD, Srisuvan T, Tang KFJ, Lightner DV (2007) Real-time reverse transcription polymerase chain reaction assay using TaqMan probe for detection and quantification of Infectious myonecrosis virus (IMNV). Aquaculture 264:9–15

    CAS  Google Scholar 

  • Aragão FJL, Ribeiro SG, Barros LMG, Brasileiro ACM, Maxwell DR, Rech EL, Faria JC (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breeding 4:491–499

    Google Scholar 

  • Arts JAJ, Cornelissen FHJ, Cijsouw T, Hermsen T, Savelkoul HFJ, Stet RJM (2007) Molecular cloning and expression of a Toll receptor in the giant tiger shrimp. Penaeus monodon. Fish Shellfish Immunol 23:504–513

    PubMed  CAS  Google Scholar 

  • Assavalapsakul W, Smith DR, Panyim S (2006) Identification and characterization of a Penaeus monodon lymphoid cell-expressed receptor for the yellow head virus. J Virol 80:262–269

    PubMed  CAS  Google Scholar 

  • Bachere E, Fuchs R, Söderhäll K (2000) Special issue on shrimp response to pathogens. Aquaculture 191:1–270

    Google Scholar 

  • Balasubramanian G, Sarathi M, Venkatesan C, Thomas J, Sahul Hameed AS (2008) Studies on the immunomodulatory effect of extract of Cyanodon dactylon in shrimp, Penaeus monodon, and its efficacy to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 25:820–828

    PubMed  CAS  Google Scholar 

  • Bangrak P, Graidist P, Chotigeat W, Supamattaya K, Phongdara A (2002) A syntenin-like protein with postsynaptic density protein (PDZ) domains produced by black tiger shrimp Penaeus monodon in response to white spot syndrome virus infection. Dis Aquat Org 49:19–25

    PubMed  CAS  Google Scholar 

  • Bangrak P, Graidist P, Chotigeat W, Phongdara A (2004) Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. J Biotechnol 108:219–226

    PubMed  CAS  Google Scholar 

  • Baric RS, Sims AC (2005) Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Topics Microbiol Immunol 287:229–252

    CAS  Google Scholar 

  • Bartenschlager R (2006) Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opinion Microbiol 9:416–422

    CAS  Google Scholar 

  • Bonami JR, Hasson KW, Mari J, Poulos BT, Lightner DV (1997) Taura syndrome of marine penaeid shrimp: characterization of the viral agent. J Gen Virol 78:313–319

    PubMed  CAS  Google Scholar 

  • Bonnichon V, Lightner DV, Bonami JR (2006) Viral interference between infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in Litopenaeus vannamei. Dis Aquat Org 72:179–184

    PubMed  Google Scholar 

  • Boonyaratpalin S, Supamattaya K, Kasornchandra J, Direkbusaracom S, Ekpanithanpong U, Chantanachooklin C (1993) Non-occluded baculo-like virus, the causative agent of yellow head disease in the black tiger shrimp (Penaeus monodon). Fish Pathol 28:103–109

    Google Scholar 

  • Bourchookarn A, Havanapan PO, Thongboonkerd V, Krittanai C (2008) Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochim BBA-Proteins Proteom 1784:504–511

    CAS  Google Scholar 

  • Bright Singh IS, Manjusha M, Somnath Pai S, Philip R (2005) Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis Aquat Org 66:265–270

    PubMed  CAS  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    PubMed  CAS  Google Scholar 

  • Chang C-F, Su M-S, Chen H-Y, Liao I-C (2003) Dietary [beta]-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol 15:297–310

    PubMed  CAS  Google Scholar 

  • Chantanachookin C, Boonyaratanapalin S, Kasornchandra J, Direkbusarakom S, Ekpanithanpong U, Supamataya K, Siurairatana S, Flegel TW (1993) Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by “yellow-head” disease. Dis Aquat Org 17:145–157

    Google Scholar 

  • Chen LL, Leu JH, Huang CJ, Chou CM, Chen SM, Wang CH, Lo CF, Kou GH (2002) Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology 293:44–53

    PubMed  CAS  Google Scholar 

  • Chen LL, Lu LC, Wu WJ, Lo CF, Huang WP (2007) White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Dis Aquat Org 74:171–178

    PubMed  CAS  Google Scholar 

  • Chen D, He N, Xu X (2008a) Mj-DWD, a double WAP domain-containing protein with antiviral relevance in Marsupenaeus japonicus. Fish Shellfish Immunol 25:775–781

    PubMed  CAS  Google Scholar 

  • Chen WY, Ho KC, Leu JH, Liu KF, Wang HC, Kuo GH, Lo CF (2008b) WSSV infection activates STAT in shrimp. Dev Comp Immunol 32:1142–1150

    PubMed  CAS  Google Scholar 

  • Chotigeat W, Deachamag P, Phongdara A (2007) Identification of a protein binding to the phagocytosis activating protein (PAP) in immunized black tiger shrimp. Aquaculture 271:112–120

    CAS  Google Scholar 

  • Christian P, Carstens E, Domier L, Johnson K, Nakashima N, Scotti P, van der Wilk F (2005) Family Dicistroviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier Academic Press, London, pp 783–788

    Google Scholar 

  • Citarasu T, Sivaram V, Immanuel G, Rout N, Murugan V (2006) Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol 21:372–384

    PubMed  Google Scholar 

  • Côté I, Navarro S, Tang KFJ, Noble B, Lightner DV (2008) Taura syndrome virus from Venezuela is a new genetic variant. Aquaculture 284:62–67

    Google Scholar 

  • Cowley JA, Walker PJ (2002) The complete genome sequence of gill-associated virus of Penaeus monodon prawns indicates a gene organisation unique among nidoviruses. Arch Virol 147:1977–1987

    PubMed  CAS  Google Scholar 

  • Cowley JA, Dimmock CM, Wongteerasupaya C, Boonsaeng V, Panyim S, Walker PJ (1999) Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Dis Aquat Org 36:153–157

    PubMed  CAS  Google Scholar 

  • Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R, Belhouchet M, Lemasson JJ, De Micco P, De Lamballerie X (2004) Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 85:1971–1980

    PubMed  CAS  Google Scholar 

  • Dalmo RA, Bøgwald J (2008) ß-glucans as conductors of immune symphonies. Fish Shellfish Immunol 25:384–396

    PubMed  CAS  Google Scholar 

  • De La Vega E (2006) A molecular approach to study the interaction between environmental stress, immune response and disease in the black tiger prawn (Penaeus monodon). School of Integrative Biology. University of Queensland, Brisbane, Australia

    Google Scholar 

  • De La Vega E, Degnan BM, Hall MR, Cowley JA, Wilson KJ (2004) Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon. Dis Aquat Org 59:195–203

    PubMed  Google Scholar 

  • De La Vega E, Degnan BM, Hall MR, Wilson KJ (2007a) Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors. Fish Shellfish Immunol 23:1072–1088

    PubMed  Google Scholar 

  • De La Vega E, Hall MR, Wilson KJ, Reverter A, Woods RG, Degnan BM (2007b) Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiol Genomics 31:126–138

    PubMed  Google Scholar 

  • De La Vega E, O'leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, Warr GW, Gross PS (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol Immunol 45:1916–1925

    PubMed  Google Scholar 

  • De Lorgeril J, Janech MG, Gueguen Y, Bachère E, Saulnier D (2005) Identification of genes that are differentially expressed in hemocytes of the Pacific blue shrimp (Litopenaeus stylirostris) surviving an infection with Vibrio penaeicida. Physiol Genomics 21:174–183

    PubMed  Google Scholar 

  • Deachamag P, Intaraphad U, Phongdara A, Chotigeat W (2006) Expression of a Phagocytosis Activating Protein (PAP) gene in immunized black tiger shrimp. Aquaculture 255:165–172

    CAS  Google Scholar 

  • Dhar AK, Roux MM, Klimpel KR (2002) Quantitative assay for measuring the Taura syndrome virus and yellow head virus load in shrimp by real-time RT-PCR using SYBR Green chemistry. J Virol Meth 104:69–82

    CAS  Google Scholar 

  • Dhar AK, Dettori A, Roux MM, Klimpel KR, Read B (2003) Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with white spot syndrome virus by cDNA microarrays. Arch Virol 148:2381–2396

    PubMed  CAS  Google Scholar 

  • Dong S, Kong J, Meng X, Zhang Q, Zhang T, Wang R (2008) Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus) chinensis. Aquaculture 282:138–141

    CAS  Google Scholar 

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler J-L (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nature Immunol 6:946–953

    CAS  Google Scholar 

  • Duvic B, Söderhäll K (1992) Purification and partial characterization of a beta-1, 3-glucan binding protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur J Biochem 207:223–228

    PubMed  CAS  Google Scholar 

  • Erickson HS, Poulos BT, Tang KFJ, Bradley-Dunlop D, Lightner DV (2005) Taura syndrome virus from Belize represents a unique variant. Dis Aquat Org 64:91–98

    PubMed  Google Scholar 

  • Escobedo-Bonilla CM, Audoorn L, Wille M, Alday-Sanz V, Sorgeloos P, Pensaert MB, Nauwynck HJ (2006) Standardized white spot syndrome virus (WSSV) inoculation procedures for intramuscular or oral routes. Dis Aquat Org 68:181–188

    PubMed  CAS  Google Scholar 

  • Flegel TW (2001) The shrimp response to viral pathogens. In: Browdy CL, Jory DE (eds) The new wave Proceedings of the special session on sustainable shrimp aquaculture, World Aquaculture 2001, Orlando. World Aquaculture Society, Boca Raton, pp 190–214

    Google Scholar 

  • Flegel TW (2006a) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258:1–33

    Google Scholar 

  • Flegel TW (2006b) The special danger of viral pathogens in shrimp translocated for aquaculture. Science Asia 32:215–231

    Google Scholar 

  • Flegel TW (2007) Update on viral accommodation, a model for host-viral interaction in shrimp and other arthropods. Dev Comp Immunol 31:217–231

    PubMed  CAS  Google Scholar 

  • Flegel TW (2009a) Review of disease transmission risks from prawn products exported for human consumption. Aquaculture 290:179–189

    Google Scholar 

  • Flegel TW (2009b) Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biology Direct 4:32

    PubMed  Google Scholar 

  • Flegel TW, Pasharawipas T (1998) Active viral accommodation: a new concept for crustacean response to viral pathogens. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 245–250

    Google Scholar 

  • Flegel TW, Sriurairatana S, Morrison DJ, Waiyakrutha N (1997) Penaeus monodon captured broodstock surveyed for yellow-head virus and other pathogens by electron microscopy. In: Flegel TW, Menasveta P, Paisarnrat S (eds) Shrimp biotechnology in Thailand. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 37–43

    Google Scholar 

  • Flegel TW, Nielsen L, Thamavit V, Kongtim S, Pasharawipas T (2004) Presence of multiple viruses in non-diseased, cultivated shrimp at harvest. Aquaculture 240:55–68

    Google Scholar 

  • Flegel TW, Lightner DV, Lo CF, Owens L (2008) Shrimp disease control: past, present and future. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP (eds) Diseases in Asian aquaculture VI. Fish Health Section, Asian Fisheries Society, Manila, Philippines, pp 355–378

    Google Scholar 

  • Gangnonngiw W, Anantasomboon G, Sang-Oum W, Sriurairatana S, Sritunyalucksana K, Flegel TW (2009) Non-virulence of a recombinant shrimp nidovirus is associated with its non structural gene sequence and not a large structural gene deletion. Virology 385:161–168

    PubMed  CAS  Google Scholar 

  • Gómez-Anduro GA, Barillas-Mury C-V, Peregrino-Uriarte AB, Gupta L, Gollas-Galvan T, Hernandez-Lopez J, Yepiz-Plascencia G (2006) The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei: Molecular cloning and expression. Dev Comp Immunol 30:893–900

    PubMed  Google Scholar 

  • Gómez-Anduro GA, Sotelo-Mundo RR, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Tissue-specific expression and molecular modeling of cytosolic manganese superoxide dismutases from the white shrimp Litopenaeus vannamei. Dev Comp Immunol 31:783–789

    PubMed  Google Scholar 

  • Graidist P, Fujise K, Wanna W, Sritunyalucksana K, Phongdara A (2006) Establishing a role for shrimp fortilin in preventing cell death. Aquaculture 255:157–164

    CAS  Google Scholar 

  • Granja CB, Aranguren LF, Vidal OM, Aragon L, Salazar M (2003) Does hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? Dis Aquat Org 17:73–78

    Google Scholar 

  • Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, L. setiferus. Dev Comp Immunol 25:565–577

    PubMed  CAS  Google Scholar 

  • Han F, Zhang X (2007) Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity. Fish Shellfish Immunol 23:937–944

    PubMed  CAS  Google Scholar 

  • Hasson KW, Lightner DV, Poulos BT, Redman RM, White BL, Brock JA, Bonami JR (1995) Taura Syndrome in Penaeus vannamei: Demonstration of a viral etiology. Dis Aquat Org 23:115–126

    Google Scholar 

  • He N, Qin Q, Xu X (2005) Differential profile of genes expressed in hemocytes of white spot syndrome virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res 66:39–45

    PubMed  CAS  Google Scholar 

  • Hoa TTT, Hodgson RAJ, Oanh DTH, Phuong NT, Preston NJ, Walker PJ (2005) Genotypic variations in tandem repeat DNA segments between ribonucleotide reductase subunit genes of white spot syndrome virus (WSSV) isolates from Vietnam. In: Walker P, Lester R, Bondad-Reantaso MG (eds) Diseases in Asian aquaculture V. Fish Health Section, Asian Fisheries Soc, Manila, pp 339–351

    Google Scholar 

  • Huang R, Xie Y, Zhang J, Shi Z (2005) A novel envelope protein involved in White spot syndrome virus infection. J Gen Virol 86:1357–1361

    PubMed  CAS  Google Scholar 

  • Huang P-Y, Kang S-T, Chen W-Y, Hsu T-C, Lo C-F, Liu K-F, Chen L-L (2008a) Identification of the small heat shock protein, HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25:250–257

    PubMed  CAS  Google Scholar 

  • Huang S-W, Lin Y-Y, Yu E-M, Liu T-T, Shu H-Y, Wu K-M, Tsai S-H, Lo C-F, Kou G-H, Ma G-C, Chen M, Aoki T, Hirono I, Yu H-T (2008b) A first glimpse into the genome of tiger shrimp, Penaeus monodon. Handbook & abstracts, 7th symposium on diseases in Asian aquaculture. Fish Health Section, Asian Fisheries Society, Manila, p 58

    Google Scholar 

  • Inouye K, Miwa S, Oseko N, Nakano H, Kimura T, Momoyama K, Hiraoka M (1994) Mass mortalities of cultured kuruma shrimp Penaeus japonicus in Japan in 1993: Electron microscopic evidence of the causative virus. Fish Pathol 29:149–158

    Google Scholar 

  • Inouye K, Yamano K, Ikeda N, Kimura T, Nakano H, Momoyama K, Kobayashi J, Miyajima S (1996) The penaeid rod-shaped DNA virus (PRDV), which causes penaeid acute viremia (PAV). Fish Pathol 31:39–45

    Google Scholar 

  • Iwanaga S (2002) The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14:87–95

    PubMed  CAS  Google Scholar 

  • Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    PubMed  CAS  Google Scholar 

  • Jang I-K, Meng X-H, Seo H-C, Cho Y-R, Kim B-R, Ayyaru G, Kim J-S (2009) A TaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV) infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp, Fenneropenaeus chinensis. Aquaculture 287:40–45

    CAS  Google Scholar 

  • Jerry DR, Evans BS, Kenway M, Wilson K (2006) Development of a microsatellite DNA parentage marker suite for black tiger shrimp Penaeus monodon. Aquaculture 255:542–547

    CAS  Google Scholar 

  • Jimenez R (1992) Sindrome de Taura (Resumen). Acuacultura del Ecuador 1–16

  • Johansson MW, Holmblad T, Thornqvist PO, Cammarata M, Parrinello N, Söderhäll K (1999) A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish. J Cell Sci 112:917–925

    PubMed  CAS  Google Scholar 

  • Johnson KN, Van Hulten MCW, Barnes AC (2008) "Vaccination" of shrimp against viral pathogens: Phenomenology and underlying mechanisms. Vaccine 26:4885–4892

    PubMed  CAS  Google Scholar 

  • Kanthong N, Khemnu N, Sriurairatana S, Pattanakitsakul S-N, Malasit P, Flegel TW (2008) Mosquito cells accommodate balanced, persistent co-infections with a densovirus and Dengue virus. Dev Comp Immunol 32:1063–1075

    PubMed  CAS  Google Scholar 

  • Khadijah S, Neo SY, Hossain MS, Miller LD, Mathavan S, Kwang J (2003) Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J Virol 77:10162–10167

    PubMed  CAS  Google Scholar 

  • Khanobdee K, Soowannayan C, Flegel TW, Ubol S, Withyachumnarnkul B (2002) Evidence for apoptosis correlated with mortality in the giant black tiger shrimp Penaeus monodon infected with yellow head virus. Dis Aquat Org 48:79–90

    Google Scholar 

  • Klingbunga S, Penman DJ, Mcandrew BJ, Tassanakajon A, Jarayabhand P (1998) Genetic variation, population differentiation and gene flow of the giant tiger shrimp (Penaeus monodon) inferred from mtDNA-RFLP data. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 51–59

    Google Scholar 

  • Kumria R, Verma R, Rajam MV (1998) Potential applications of antisense RNA technology in plants. Curr Sci 74:35–41

    CAS  Google Scholar 

  • Kurtz J, Armitage SAO (2006) Alternative adaptive immunity in invertebrates. Trends Immunol 27:493–496

    PubMed  CAS  Google Scholar 

  • La Fauce KA, Owens L (2009) RNA interference reduces PmergDNV expression and replication in an in vivo cricket model. J Invertebr Pathol 140:10–16

    Google Scholar 

  • La Fauce KA, Layton R, Owens L (2007) TaqMan real-time PCR for detection of hepatopancreatic parvovirus from Australia. J Virol Meth 140:10–16

    Google Scholar 

  • Lai C-Y, Cheng W, Kuo C-M (2005) Molecular cloning and characterisation of prophenoloxidase from haemocytes of the white shrimp. Litopenaeus vannamei. Fish Shellfish Immunol 18:417–430

    PubMed  CAS  Google Scholar 

  • Lan Y, Xu X, Yang F, Zhang X (2006) Transcriptional profile of shrimp white spot syndrome virus (WSSV) genes with DNA microarray. Arch Virol 151:1723–1733

    PubMed  CAS  Google Scholar 

  • Lee SY, Lee BL, Söderhäll K (2004) Processing of crayfish hemocyanin subunits into phenoloxidase. Biochem Biophys Res Com 322:490–496

    PubMed  CAS  Google Scholar 

  • Lei K, Li F, Zhang M, Yang H, Luo T, Xu X (2005) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32:808–813

    Google Scholar 

  • Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T, Juan HF, Lo CF, Kou GH, Huang HC (2007) Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8:120

    PubMed  Google Scholar 

  • Leu J-H, Kuo Y-C, Kou G-H, Lo C-F (2008a) Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev Comp Immunol 32:121–133

    PubMed  CAS  Google Scholar 

  • Leu J-H, Wang H-C, Kou G-H, Lo C-F (2008b) Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Dev Comp Immunol 32:476–486

    PubMed  CAS  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like recptors-taking an evolutionary approach. Nat Rev Genet 9:165–178

    PubMed  CAS  Google Scholar 

  • Li AL, Li HY, Jin BF, Ye QN, Zhou T, Yu XD, Pan X, Man GH, He K, Yu M, Hu MR, Wang J, Yang SC, Shen BF, Zhang XM (2004) A Novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. J Biol Chem 279:49251–49258

    PubMed  CAS  Google Scholar 

  • Li HX, Meng XL, Xu JP, Lu W, Wang J (2005) Protection of crayfish, Cambarus clarkii, from white spot syndrome virus by polyclonal antibodies against a viral envelope fusion protein. J Fish Dis 28:285–291

    PubMed  CAS  Google Scholar 

  • Li DF, Zhang MC, Yang HJ, Zhu YB, Xu X (2007) β-integrin mediates WSSV infection. Virology 368:122–132

    PubMed  CAS  Google Scholar 

  • Liang Y, Huang J, Song X-L, Zhang P-J, Xu H-S (2005) Four viral proteins of white spot syndrome virus (WSSV) that attach to shrimp cell membranes. Dis Aquat Org 66:81–85

    PubMed  CAS  Google Scholar 

  • Lightner DV (1996) A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. World Aquaculture Society, Baton Rouge, LA

    Google Scholar 

  • Lin C-L, Lee J-C, Chen S-S, Wood HA, Li M-L, Li C-F, Chao Y-C (1999) Persistent Hz-1 virus infection in insect cells: Evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. J Virol 73:128–139

    PubMed  CAS  Google Scholar 

  • Lin CC, Chou CM, Hsu YL, Lien JC, Wang YM, Chen ST, Tsai SC, Hsiao PW, Huang CJ (2004) Characterization of two mosquito STSTs, AaSTAT and CtSTAT: differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem 279:3308–3317

    PubMed  CAS  Google Scholar 

  • Little TJ, Hultmark D, Read AF (2005) Invertebrate immunity and the limits of mechanistic immunology. Nat Immunol 6:651–654

    PubMed  CAS  Google Scholar 

  • Liu W-J, Chang Y-S, Wang C-H, Kou G-H, Lo C-F (2005) Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334:327–341

    PubMed  CAS  Google Scholar 

  • Liu WJ, Chang YS, Wang AHJ, Kou GH, Lo CF (2007a) White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81:1461–1471

    PubMed  CAS  Google Scholar 

  • Liu Y-C, Li F-H, Wang B, Dong B, Zhang Q-L, Luan W, Zhang X-J, Xiang J-H (2007b) A transglutaminase from Chinese shrimp (Fenneropenaeus chinensis), full-length cDNA cloning, tissue localization and expression profile after challenge. Fish Shellfish Immunol 22:576–588

    PubMed  CAS  Google Scholar 

  • Liu YC, Li FH, Dong B, Wang B, Luan W, Zhang XJ, Zhang LS, Xiang JH (2007c) Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol Immunol 44:598–607

    PubMed  CAS  Google Scholar 

  • Liu Y, Li F, Wang B, Dong B, Zhang X, Xiang J (2009a) A serpin from Chinese shrimp Fenneropenaeus chinensis is responsive to bacteria and WSSV challenge. Fish Shellfish Immunol 26:345–351

    PubMed  Google Scholar 

  • Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, Chang CF, Liu KF, Su MS, Wang CH, Kou GH (1996) White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Org 27:215–225

    Google Scholar 

  • Loh PC, Tapay LM, Lu Y, Nadala EC (1997) Viral pathogens of the penaeid shrimp. Adv Virus Res 48:263–312

    PubMed  CAS  Google Scholar 

  • Loh PC, Cesar E, Nadala B Jr, Tapay LM, Lu Y (1998) Recent developments in immunologically-based and cell culture protocols for the specific detection of shrimp viral pathogens. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 255–259

    Google Scholar 

  • Longyant S, Sithigorngul P, Chaivisuthangkura P, Rukpratanporn S, Sithigorngul W, Menasveta P (2005) Differences in susceptibility of palaemonid shrimp species to yellow head virus (YHV) infection. Dis Aquat Org 64:5–12

    PubMed  Google Scholar 

  • Longyant S, Sattaman S, Chaivisuthangkura P, Rukpratanporn S, Sithigorngul W, Sithigorngul P (2006) Experimental infection of some penaeid shrimps and crabs by yellow head virus (YHV). Aquaculture 257:83–91

    CAS  Google Scholar 

  • Lu L, Kwang J (2004) Identification of a novel shrimp protein phosphatase and its association with latencey-related ORF427 of white spot syndrome virus. FEBS Lett 577:141–146

    PubMed  CAS  Google Scholar 

  • Lu Y, Sun PS (2005) Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene. Antiviral Res 67:141–146

    PubMed  CAS  Google Scholar 

  • Luana W, Li F, Wang B, Zhang X, Liu Y, Xiang J (2007) Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol- B Biochem Mol Biol 147:482–491

    PubMed  Google Scholar 

  • Luo T, Zhang X, Shao Z, Xu X (2003) PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon. FEBS Lett 551:53–57

    PubMed  CAS  Google Scholar 

  • Luo T, Yang H, Li F, Zhang X, Xu X (2006) Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev Comp Immunol 30:607–617

    PubMed  CAS  Google Scholar 

  • Ma THT, Tiu SHK, He J-G, Chan S-M (2007) Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: early gene down-regulation after WSSV infection. Fish Shellfish Immunol 23:430–437

    PubMed  CAS  Google Scholar 

  • Ma TH-T, Benzie JAH, He J-G, Chan S-M (2008) PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon. J Invertebr Pathol 99:332–341

    PubMed  CAS  Google Scholar 

  • Máki-Valkama T, Pehu T, Santala A, Valkonen JPT, Koivu K, Lehto K, Pehu E (2000) High level of resistance to potato virus Y by expressing P1 sequence in antisense orientation in transgenic potato. Mol Breeding 6:95–104

    Google Scholar 

  • Maningas MBB, Kondo H, Hirono I, Saito-Taki T, Aoki T (2008) Essential function of transglutaminase and clotting protein in shrimp immunity. Mol Immunol 45:1269–1275

    PubMed  CAS  Google Scholar 

  • Mari J, Poulos BT, Lightner DV, Bonami JR (2002) Full nucleotide sequence and genome organization of the Taura syndrome virus (TSV) of penaeid shrimp. J Gen Virol 83:917–928

    Google Scholar 

  • Marks H, Goldbach RW, Vlak JM, Van Hulten MCW (2004) Genetic variation among isolates of white spot syndrome virus. Arch Virol 149:673–697

    PubMed  CAS  Google Scholar 

  • Marks H, Van Duijse JJA, Zuidema D, Van Hulten MCW, Vlak JM (2005) Fitness and virulence of an ancestral white spot syndrome virus isolate from shrimp. Virus Res 110:9–20

    PubMed  CAS  Google Scholar 

  • Martinez O, Antony C, Pehau-Arnaudet G, Berger EG, Salamero J, Goud B (1997) GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc Natl Acad Sci USA 94:1828–1833

    PubMed  CAS  Google Scholar 

  • Mathew S, Ashok Kumar K, Anandan R, Viswanathan Nair PG, Devadasan K (2007) Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comp Biochem Physiol Part C: Toxicol Pharmacol 145:315–320

    Google Scholar 

  • Mekata T, Kono T, Yoshida T, Sakai M, Itami T (2008) Identification of cDNA encoding Toll receptor, MjToll gene from kuruma shrimp. Marsupenaeus japonicus. Fish Shellfish Immunol 24:122–133

    PubMed  CAS  Google Scholar 

  • Melena J, Bayot B, Betancourt I, Amano Y, Panchana F, Alday V, Calderón J, Stern S, Roch P, Bonami JR (2006) Pre-exposure to infectious hypodermal and haematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) post-larvae. J Fish Dis 29:589–600

    PubMed  CAS  Google Scholar 

  • Mohankumar K, Ramasamy P (2006) White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Res 115:69–75

    PubMed  CAS  Google Scholar 

  • Molthathong D, Senapin S, Klinbunga S, Puanglarp N, Rojtinnakorn J, Flegel TW (2008a) Down-regulation of defender against apoptotic death (DAD1) after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish shellfish Immunol 24:173–179

    PubMed  CAS  Google Scholar 

  • Molthathong S, Buaklin A, Senapin S, Klinbunga S, Rojtinnakorn J, Flegel TW (2008b) Up-regulation of Ribophorin I after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 25:40–46

    PubMed  CAS  Google Scholar 

  • Montgomery-Brock D, Tacon AGJ, Poulos B, Lightner D (2007) Reduced replication of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in Litopenaeus vannamei held in warm water. Aquaculture 265:41–48

    Google Scholar 

  • Moss SM (2002) Marine shrimp farming in the western hemisphere: past problems, present solutions, and future visions. Rev Fish Sci 10:601–620

    Google Scholar 

  • Moss SM, Doyle RW, Lightner DV (2005) Breeding shrimp for disease resistance: challenges and opportunities for improvement. In: Walker PJ, Lester RG, Bondad-Reantaso MG (eds) Diseases in Asian aquaculture V proceedings of the 5th symposium on diseases in Asian aquaculture. Asian Fisheries Society, Manila, pp 379–393

    Google Scholar 

  • Mouillesseaux KP, Klimpel KR, Dhar AK (2003) Improvement in the specificity and sensitivity of detection for the Taura syndrome virus and yellow head virus of penaeid shrimp by increasing the amplicon size in SYBR Green real-time RT-PCR. J Virol Methods 111:121–127

    PubMed  CAS  Google Scholar 

  • Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M, Muroga K (2004) Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 229:25–36

    Google Scholar 

  • Nielsen L, Sang-Oum W, Cheevadhanarak S, Flegel TW (2005) Taura syndrome virus (TSV) in Thailand and its relationship to TSV in China and the Americas. Dis Aquat Org 63:101–106

    PubMed  CAS  Google Scholar 

  • Ning J-F, Zhu W, Xu J-P, Zheng C-Y, Meng X-L (2009) Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine 27:1127–1135

    PubMed  CAS  Google Scholar 

  • Nunan LM, Tang-Nelson K, Lightner DV (2004) Real-time RT-PCR determination of viral copy number in Penaeus vannamei experimentally infected with Taura syndrome virus. Aquaculture 229:1–10

    CAS  Google Scholar 

  • O'leary NA, Trent Iii HF, Robalino J, Peck MET, Mckillen DJ, Gross PS (2006) Analysis of multiple tissue-specific cDNA libraries from the Pacific whiteleg shrimp, Litopenaeus vannamei. Integr Comp Biol 46:931–939

    PubMed  Google Scholar 

  • Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, Panyim S (2008) Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp. Marine Biotech 10:374–381

    CAS  Google Scholar 

  • Pan D, He N, Yang Z, Liu H, Xu X (2005) Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev Comp Immunol 29:103–112

    PubMed  CAS  Google Scholar 

  • Pan Z-C, He J-G, Weng S-P, Yin Z-X, Fu X-Z, Li S-D (2008) Changes in mortality and immunological variables of Litopenaeus vannamei parents and their filial families infected with white spot syndrome virus under different experimental conditions. Fish Shellfish Immunol 25:459–471

    PubMed  CAS  Google Scholar 

  • Peng SE, Lo CF, Ho CH, Chang CF, Kou GH (1998a) Detection of white spot baculovirus (WSBV) in giant freshwater prawn, Macrobrachium rosenbergii, using polymerase chain reaction. Aquaculture 164:253–262

    CAS  Google Scholar 

  • Peng SE, Lo CF, Liu KF, Kou GH (1998b) The transition from pre-patent to patent infection of white spot syndrome virus (WSSV) in Penaeus monodon triggered by pereiopod excision. Fish Pathol 33:395–400

    CAS  Google Scholar 

  • Phongdara A, Wanna W, Chotigeat W (2006) Molecular cloning and expression of caspase from white shrimp Penaeus merguiensis. Aquaculture 252:114–120

    CAS  Google Scholar 

  • Phongdara A, Laoong-U-Thai Y, Wanna W (2007) Cloning of eIF5A from shrimp Penaeus monodon, a highly expressed protein involved in the survival of WSSV-infected shrimp. Aquaculture 265:16–26

    CAS  Google Scholar 

  • Pongsomboon S, Tang S, Boonda S, Aoki T, Hirono I, Yasuike M, Tassanakajon A (2008a) Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus. J Biochem Mol Biol 41:670–677

    CAS  Google Scholar 

  • Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A (2008b) Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 25:485–493

    PubMed  CAS  Google Scholar 

  • Prior S, Browdy CL, Shepard EF, Laramore R, Parnell PG (2003) Controlled bioassay systems for determination of lethal infective doses of tissue homogenates containing Taura syndrome or white spot syndrome virus. Dis Aquat Org 54:89–96

    PubMed  Google Scholar 

  • Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Anver Basha K, Sahul Hameed AS (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 26:429–437

    Google Scholar 

  • Rameshthangam P, Ramasamy P (2005) Protein expression in white spot syndrome virus infected Penaeus monodon fabricius. Virus Res 110:133–141

    PubMed  CAS  Google Scholar 

  • Rameshthangam P, Ramasamy P (2006) Antioxidant and membrane bound enzymes activity in WSSV-infected Penaeus monodon Fabricius. Aquaculture 254:32–39

    CAS  Google Scholar 

  • Rattanarojpong T, Wang HC, Lo CF, Flegel TW (2007) Analysis of differently expressed proteins and transcripts in gills of Penaeus vannamei after yellow head virus infection. Proteomics 7:3809–3814

    PubMed  CAS  Google Scholar 

  • Rijiravanich A, Browdy CL, Withyachumnarnkul B (2008) Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish Shellfish Immunol 24:308–313

    PubMed  CAS  Google Scholar 

  • Robalino J, Browdy CL, Proir S, Metz A, Parnell P, Gross P, Warr G (2004) Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78:10442–10448

    PubMed  CAS  Google Scholar 

  • Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW (2005) Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol 79:13561–1371

    PubMed  CAS  Google Scholar 

  • Robalino J, Payne C, Parnell P, Shepard E, Grimes AC, Metz A, Prior S, Witteveldt J, Vlak JM, Gross PS, Warr G, Browdy CL (2006) Inactivation of white spot syndrome virus (WSSV) by normal rabbit serum: Implications for the role of the envelope protein VP28 in WSSV infection of shrimp. Virus Res 118:55–61

    PubMed  CAS  Google Scholar 

  • Robalino J, Almeida JS, Mckillen D, Colglazier J, Trent Iii HF, Yian AC, Peck MET, Browdy CL, Chapman RW, Warr GW, Gross PS (2007a) Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: Tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiological Genomics 29:44–56

    PubMed  CAS  Google Scholar 

  • Robalino J, Bartlett TC, Chapman RW, Gross PS, Browdy CL, Warr GW (2007b) Double-stranded RNA and antiviral immunity in marine shrimp: Inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol 31:539–547

    PubMed  CAS  Google Scholar 

  • Robalino J, Carnegie RB, Oleary N, Ouvry-Patat SA, De La Vega E, Prior S, Gross PS, Browdy CL, Chapman RW, Schey KL, Warr G (2009a) Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei. Vet Immunol Immunopath 128:110–118

    CAS  Google Scholar 

  • Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T (2002) Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 13:69–83

    PubMed  CAS  Google Scholar 

  • Rosalind George M, Maharajan A, Riji John K, Prince Jeyaseelan MJ (2006) Shrimps survive white spot syndrome virus challenge following treatment with Vibrio bacterin. Indian J Exp Biol 44:63–67

    PubMed  Google Scholar 

  • Rout N, Kumar S, Jaganmohan S, Murugan V (2007) DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine 25:2778–2786

    PubMed  CAS  Google Scholar 

  • Roux MM, Pain A, Klimpel KR, Dhar AK (2002) The lipopolysaccharide and beta-1, 3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol 76:7140–7149

    PubMed  CAS  Google Scholar 

  • Sahtout AH, Hassan MD, Shariff M (2001) DNA fragmentation, an indicator of apoptosis, in cultured black tiger shrimp Penaeus monodon infected with white spot syndrome virus (WSSV). Dis Aquat Org 44:155–159

    Google Scholar 

  • Sahul Hameed AS, Sarathi M, Sudhakaran R, Balasubramanian G, Syed Musthaq S (2006) Quantitative assessment of apoptotic hemocytes in white spot syndrome virus (WSSV)-infected penaeid shrimp, Penaeus monodon and Penaeus indicus, by flow cytometric analysis. Aquaculture 256:111–120

    Google Scholar 

  • Sarathi M, Nazeer Basha A, Ravi M, Venkatesan C, Senthil Kumar B, Sahul Hameed AS (2008) Clearance of white spot syndrome virus (WSSV) and immunological changes in experimentally WSSV-injected Macrobrachium rosenbergii. Fish Shellfish Immunol 25:222–230

    PubMed  CAS  Google Scholar 

  • Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511

    PubMed  CAS  Google Scholar 

  • Senapin S, Phongdara A (2006) Binding of shrimp cellular proteins to Taura syndrome viral capsid proteins VP1, VP2 and VP3. Virus Res 122:69–77

    PubMed  CAS  Google Scholar 

  • Sittidilokratna N, Hodgson RA, Cowley JA, Jitrapakdee S, Boonsaeng V, Panyim S, Walker PJ (2002) Complete ORF1b-gene sequence indicates yellow head virus is an invertebrate nidovirus. Dis Aquat Org 50:87–93

    PubMed  CAS  Google Scholar 

  • Sittidilokratna N, Dangtip S, Cowley JA, Walker PJ (2008) RNA transcription analysis and completion of the genome sequence of yellow head nidovirus. Virus Res 136:157–165

    PubMed  CAS  Google Scholar 

  • Söderhäll K (1999) Invertebrate immunity. Dev Comp Immunol 23:263–442

    PubMed  Google Scholar 

  • Soto MA, Lotz JM (2003) Transmission, virulence, and recovery coefficients of white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) infections in Kona stock Litopenaeus vannamei. J Aquat An Hlth 15:48–54

    Google Scholar 

  • Spann KM, Vickers JE, Lester RJG (1995) Lymphoid organ virus of Penaeus monodon from Australia. Dis Aquat Org 23:127–134

    Google Scholar 

  • Spann KM, Cowley JA, Walker PJ, Lester RJG (1997) A yellow-head-like virus from Penaeus monodon cultured in Australia. Dis Aquat Org 31:169–179

    Google Scholar 

  • Spann KM, Donaldson RA, Cowley JA, Walker PJ (2000) Differences in the susceptibility of some penaeid prawn species to gill-associated virus (GAV) infection. Dis Aquat Org 42:221–225

    PubMed  CAS  Google Scholar 

  • Srisuvan T, Noble BL, Schofield PJ, Lightner DV (2006) Comparison of four Taura syndrome virus (TSV) isolates in oral challenge studies with Litopenaeus vannamei unselected or selected for resistance to TSV. Dis Aquat Org 71:1–10

    PubMed  Google Scholar 

  • Sritunyalucksana K, Söderhäll K (2000) The proPO and clotting system in crustaceans. Aquaculture 191:53–69

    CAS  Google Scholar 

  • Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW (2006) PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol 80:10734–10742

    PubMed  CAS  Google Scholar 

  • Su J, Oanh DTH, Lyons RE, Leeton L, Van Hulten MCW, Tan S-H, Song L, Rajendran KV, Walker PJ (2008) A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1. Fish shellfish Immunol 24:223–233

    PubMed  Google Scholar 

  • Sukhumsirichart W, Kiatpathomchai W, Wongteerasupaya C, Withyachumnarnkul B, Flegel TW, Boonseang V, Panyim S (2002) Detection of hepatopancreatic parvovirus (HPV) infection in Penaeus monodon using PCR-ELISA. Mol Cell Probes 16:409–413

    PubMed  CAS  Google Scholar 

  • Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Tao R, Zhang G (2008) Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 25:290–297

    PubMed  Google Scholar 

  • Syed Musthaq S, Yoganandhan K, Sudhakaran R, Rajesh Kumar S, Sahul Hameed AS (2006) Neutralization of white spot syndrome virus of shrimp by antiserum raised against recombinant VP28. Aquaculture 253:98–104

    Google Scholar 

  • Tang KFJ, Lightner DV (2000) Quantification of white spot syndrome virus DNA through a competitive polymerase chain reaction. Aquaculture 189:11–21

    CAS  Google Scholar 

  • Tang KF, Lightner DV (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp by real-time PCR. Dis Aquat Org 44:79–85

    PubMed  CAS  Google Scholar 

  • Tang KFJ, Lightner DV (2005) Phylogenetic analysis of Taura syndrome virus isolates collected between 1993 and 2004 and virulence comparison between two isolates representing different genetic variants. Virus Res 112:69–76

    PubMed  CAS  Google Scholar 

  • Tang KFJ, Lightner DV (2006) Infectious hypodermal and hematopoietic necrosis virus (IHHNV)-related sequences in the genome of the black tiger prawn Penaeus monodon from Africa and Australia. Virus Res 118:185–191

    PubMed  CAS  Google Scholar 

  • Tang KFJ, Durand SV, White BL, Redman RM, Mohney LL, Lightner DV (2003) Induced resistance to white spot syndrome virus infection in Penaeus stylirostris through pre-infection with infectious hypodermal and hematopoietic necrosis virus - a preliminary study. Aquaculture 216:19–29

    Google Scholar 

  • Tang KFJ, Wang J, Lightner DV (2004) Quantitation of Taura syndrome virus by real-time RT-PCR with a TaqMan assay. J Virol Meth 115:109–114

    CAS  Google Scholar 

  • Tang KFJ, Navarro SA, Lightner DV (2007) PCR assay for discriminating between infectious hypodermal and hematopoietic necrosis virus (IHHNV) and virus-related sequences in the genome of Penaeus monodon. Dis Aquat Org 74:165–170

    PubMed  CAS  Google Scholar 

  • Tanticharoen M, Flegel TW, Meerod W, Grudloyma U, Pisamai N (2008) Aquacultural biotechnology in Thailand: the case of the shrimp industry. Int J Biotech 10:588–603

    Google Scholar 

  • Tassanakajon A, Pongsomboon S, Rimphanitchayakit V, Jarayabhand P, Boonsaeng V (1997) Random amplified polymorphic DNA (RAPD) markers for determination of genetic variation in wild populations of the black tiger prawn (Penaeus monodon) in Thailand. Mol Mar Biol Biotechnol 6:110–115

    PubMed  CAS  Google Scholar 

  • Tassanakajon A, Klinbunga S, Paunglarp N, Rimphanitchayakit V, Udomkit A, Jitrapakdee S, Sritunyalucksana K, Phongdara A, Pongsomboon S, Supungul P, Tang S, Kuphanumart K, Pichyangkura R, Lursinsap C (2006) Penaeus monodon gene discovery project: The generation of an EST collection and establishment of a database. Gene 384:104–112

    PubMed  CAS  Google Scholar 

  • Tirasophon W, Roshorm Y, Panyim S (2005) Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochem Biophys Res Comm 334:102–107

    PubMed  CAS  Google Scholar 

  • Tirasophon W, Yodmuang S, Chinnirunvong W, Plongthongkum N, Panyim S (2007) Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res 74:150–155

    PubMed  CAS  Google Scholar 

  • Tong J, Lehnert SA, Byrne K, Kwan HS, Chu KH (2002) Development of polymorphic EST markers in Penaeus monodon: applications in penaeid genetics. Aquaculture 208:69–79

    Google Scholar 

  • Tonganunt M, Phongdara A, Chotigeat W, Fujise K (2005) Identification and characterization of syntenin binding protein in the black tiger shrimp Penaeus monodon. J Biotech 120:135–145

    CAS  Google Scholar 

  • Tonganunt M, Nupan B, Saengsakda M, Suklour S, Wanna W, Senapin S, Chotigeat W, Phongdara A (2008) The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25:633–637

    PubMed  CAS  Google Scholar 

  • Tsai MF, Kou GH, Liu HC, Liu KF, Chang CF, Peng SE, Hsu HC, CH W, Lo CF (1999) Long-term presence of white spot syndrome virus (WSSV) in a cultivated shrimp population without disease outbreaks. Dis Aquat Org 38:107–114

    Google Scholar 

  • Tsai J-M, Wang H-C, Leu J-H, Kou G-H, Lo C-F, Hsiao H-H, Wang AH-J (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78:11360–11370

    PubMed  CAS  Google Scholar 

  • Unajak S, Boonsaeng V, Jitrapakdee S (2006) Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp (Penaeus monodon). Comp Biochem Physiol Part B: Biochem Mol Biol 145:179–187

    Google Scholar 

  • Van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst RK, Vlak JM (2001a) The white spot syndrome virus DNA genome sequence. Virology 286:7–22

    PubMed  Google Scholar 

  • Van Hulten MC, Witteveldt J, Snippe M, Vlak JM (2001b) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285:228–233

    PubMed  Google Scholar 

  • Van Hulten MCW, Reijns M, Vermeesch AMG, Zandbergen F, Vlak JM (2002) Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. J Gen Virol 83:257–265

    PubMed  Google Scholar 

  • Vaseeharan B, Prem Anand T, Murugan T, Chen JC (2006) Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Lett Appl Microbiol 43:137–142

    PubMed  CAS  Google Scholar 

  • Vasta GR, Ahmed H, Odom EW (2004) Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermics vertebrates. Curr Opin Struc Biol 14:617–630

    CAS  Google Scholar 

  • Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Muroga K (2000) Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis Aquat Org 42:83–89

    PubMed  CAS  Google Scholar 

  • Vidricaire G, Tremblay MJ (2005) Rab5 and Rab7, but not ARF6, govern the early events of HIV-1 infection in polarized human placental cells. J Immunol 175:6517–6530

    PubMed  CAS  Google Scholar 

  • Vlak JM, Bonami JR, Flegel TW, Kou GH, Lightner DV, Lo CF, Loh PC, Walker PW (2005) Nimaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy eighth report of the international committee on taxonomy of viruses. Elsevier, Amsterdam, pp 187–192

    Google Scholar 

  • Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3:e233

    PubMed  Google Scholar 

  • Walker PJ, Bonami JR, Boonsaeng V, Chang PS, Cowley JA, Enjuanes L, Flegel TW, Lightner DV, Loh PC, Snijder EJ, Tang K (2005) Family roniviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 973–977

    Google Scholar 

  • Wang W, Zhang X (2008) Comparison of antiviral efficiency of immune responses in shrimp. Fish Shellfish Immunol 25:522–527

    PubMed  CAS  Google Scholar 

  • Wang R, Liang Z, Hall M, Söderhäll K (2001) A transglutaminase involved in the coagulation system of the freshwater crayfish. Pacifastacus leniusculus. Tissue localisation and cDNA cloning. Fish Shellfish Immunol 11:623–637

    PubMed  CAS  Google Scholar 

  • Wang B, Li F, Dong B, Zhang X, Zhang C, Xiang J (2006) Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol 8:491–500

    PubMed  Google Scholar 

  • Wang HC, Wang HC, Leu JH, Kou GH, Wang AHJ, Lo CF (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31:672–686

    PubMed  CAS  Google Scholar 

  • Wang B, Li F, Luan W, Xie Y, Zhang C, Luo Z, Gui L, Yan H, Xiang J (2008a) Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Marine Biotech 10:664–675

    CAS  Google Scholar 

  • Wang L, Zhi B, Wu W, Zhang X (2008b) Requirement for shrimp caspase in apoptosis against virus infection. Dev Comp Immunol 32:706–715

    PubMed  CAS  Google Scholar 

  • Westenberg M, Heinhuis B, Zuidema D, Vlak JM (2005) siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res 114:133–139

    PubMed  CAS  Google Scholar 

  • White BL, Schofield PJ, Poulos BT, Lightner DV (2002) A laboratory challenge method for estimating taura syndrome virus resistance in selected lines of pacific white shrimp Litopenaeus vannamei. J World Aquacul Soc 33:341–348

    Google Scholar 

  • Wijegoonawardane PKM (2008) Molecular epidemiology of yellow head-complex viruses of cultured prawns in the Asian region. School of Molecular and Microbial Sciences. University of Queensland, Brisbane

    Google Scholar 

  • Wijegoonawardane PMK, Cowley JA, Kiatpathomchai W, Nielsen L, Walker PJ (2004) Phylogenetic analysis and evidence of genetic recombination among six genotypes of yellow head complex viruses from Penaeus monodon Book of abstracts, 7th Asian Fisheries Forum, Penang, Malaysia. Asian Fisheries Society, Manila, p 201, Book of abstracts

    Google Scholar 

  • Wijegoonawardane PKM, Cowley JA, Phan T, Hodgson RAJ, Nielsen L, Kiatpathomchai W, Walker PJ (2008) Genetic diversity in the yellow head nidovirus complex. Virology 380:213–225

    PubMed  CAS  Google Scholar 

  • Wilson KJ, De La Vega E (2005) The potential of microarrays to assist shrimp breeding and production: A review. Australian J Exp Agricul 45:901–911

    CAS  Google Scholar 

  • Wilson K, Li Y, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204:297–309

    CAS  Google Scholar 

  • Witteveldt J, Cifuentes CC, Vlak JM, Van Hulten MCW (2004a) Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol 78:2057–2061

    PubMed  CAS  Google Scholar 

  • Witteveldt J, Vlak JM, Van Hulten MCW (2004b) Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 16:571–579

    PubMed  CAS  Google Scholar 

  • Wongpanya R, Aoki T, Hirono I, Yasuik M, Tassanakajon A (2007) Analysis of gene expression in haemocytes of shrimp Penaeus monodon challenged with white Spot syndrome virus by cDNA microarray. ScienceAsia 33:165–174

    CAS  Google Scholar 

  • Wongprasert K, Khanobdee K, Glunukarn S, Meeratana P, Withyachumnarnkul B (2003) Time-course and levels of apoptosis in various tissues of black tiger shrimp Penaeus monodon infected with white spot syndrome virus. Dis Aquat Org 55:3-10

    Google Scholar 

  • Wongteerasupaya C, Vickers JE, Sriurairatana S, Nash GL, Akarajamorn A, Bonsaeng V, Panyim S, Tassanakajon A, Withyachumnarnkul B, Flegel TW (1995) A non-occluded, systemic baculovirus that occurs in the cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn, Penaeus monodon. Dis Aquat Org 21:69–77

    Google Scholar 

  • Wongteerasupaya C, Pungchai P, Withyachumnarnkul B, Boonsaeng V, Panyim S, Flegel TW, Walker PJ (2003) High variation in repetitive DNA fragment length for white spot syndrome virus (WSSV) isolates in Thailand. Dis Aquat Org 54:253–257

    PubMed  CAS  Google Scholar 

  • Wu JL, Muroga K (2004) Apoptosis does not play an important role in the resistance of "immune" Penaeus japonicus against white spot syndrome virus. J Fish Dis 27:15–21

    PubMed  CAS  Google Scholar 

  • Wu W, Zhang X (2007) Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection. Fish Shellfish Immunol 23:438–445

    PubMed  CAS  Google Scholar 

  • Wu JL, Namikoshi A, Nishizawa T, Mushiak K, Teruya K, Muroga K (2001) Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Dis Aquat Org 47:129–135

    PubMed  CAS  Google Scholar 

  • Wu JL, Nishioka T, Mori K, Nishizawa T, Muroga K (2002) A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol 13:391–403

    PubMed  CAS  Google Scholar 

  • Wu W, Wang L, Zhang X (2005) Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology 332:578–583

    PubMed  CAS  Google Scholar 

  • Wu W, Zong R, Xu J, Zhang X (2008) Antiviral phagocytosis is regulated by a novel rab-dependent complex in shrimp Penaeus japonicus. J Proteome Res 7:424–431

    PubMed  CAS  Google Scholar 

  • Wuthisuthimethavee S, Lumubol P, Vanavichit A, Tragoonrung S (2003) Development of microsatellite markers in black tiger shrimp (Penaeus monodon Fabricius). Aquaculture 224:39–50

    CAS  Google Scholar 

  • Wyban J (2007a) Domestication of pacific white shrimp revolutionizes aquaculture. Global Aquaculture Advocate July/August: 42–44

  • Wyban J (2007b) Thailand's white shrimp revolution. Global Aquaculture Advocate May/June:56–58

  • Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathol 4:e1000098

    Google Scholar 

  • Xiang J, Bing W, Li F, Liu B, Zhou Y, Tong W (2008) Generation and analysis of 10,443 ESTs from cephalothorax of Fenneropenaeus chinensis. 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008

  • Xie X, Yang F (2005) Interaction of white spot syndrome virus VP26 protein with actin. Virology 336:93–99

    PubMed  CAS  Google Scholar 

  • Xie X, Yang F (2006) White spot syndrome virus VP24 interacts with VP28 and is involved in virus infection. J Gen Virol 87:1903–1908

    PubMed  CAS  Google Scholar 

  • Xie Y, Wang B, Li F, Jiang H, Xiang J (2008) Molecular cloning and characterization of proliferating cell nuclear antigen (PCNA) from Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol Part B: Biochem Mol Biol 151:225–229

    Google Scholar 

  • Xu Z, Dhar AK, Wyrzykowski J, Alcivar-Warren A (1999) Identification of abundant and informative microsatellites from shrimp (Penaeus monodon) genome. Anim Genet 30:150–156

    PubMed  CAS  Google Scholar 

  • Xu ZK, Wyrzykowski J, Alcivar-Warren A, Argue BJ, Moss SM, Arce SM, Traub M, Calderon FRO, Lotz J, Breland V (2003) Genetic analyses for TSV-susceptible and TSV-resistant Pacific white shrimp Litopenaeus vannamei using M1 microsatellite. J World Aquacul Soc 34:332–343

    Google Scholar 

  • Xu Z, Du H, Xu X, Sun J, Shen J (2006) Crayfish Procambarus clarkii protected against white spot syndrome virus by oral administration of viral proteins expressed in silkworms. Aquaculture 253:179–183

    CAS  Google Scholar 

  • Xu J, Han F, Zhang X (2007) Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 73:126–131

    PubMed  CAS  Google Scholar 

  • Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP, Chan SM, Yu XQ, He JG (2007) A Toll receptor in shrimp. Mol Immunol 44:2009–2018

    Google Scholar 

  • Yang C, Zhang J, Li F, Ma H, Zhang Q, Jose Priya TA, Zhang X, Xiang J (2008) A Toll receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio anguillarum infection. Fish Shellfish Immunol 24:564–574

    PubMed  CAS  Google Scholar 

  • Yodmuang S, Tirasophon W, Roshorm Y, Chinnirunvong W, Panyim S (2006) YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Comm 341:351–356

    PubMed  CAS  Google Scholar 

  • Yoganandhan K, Thirupathi S, Sahul Hameed AS (2003) Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture 221:1–11

    CAS  Google Scholar 

  • Zambon RA, Nandakumar M, Vakharia VN, Wu LP (2005) The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci USA 102:7257–7262

    PubMed  CAS  Google Scholar 

  • Zerial M, Macbride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    PubMed  CAS  Google Scholar 

  • Zhang X, Huang C, Xu X, Hew CL (2002a) Identification and localization of a prawn white spot syndrome virus gene that encodes an envelope protein. J Gen Virol 83:1069–1074

    PubMed  CAS  Google Scholar 

  • Zhang X, Huang C, Xu X, Hew CL (2002b) Transcription and identification of an envelope protein gene (p22) from shrimp white spot syndrome virus. J Gen Virol 83:471–477

    PubMed  CAS  Google Scholar 

  • Zhang X, Huang C, Qin Q (2004) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antiviral Res 61:93–99

    PubMed  CAS  Google Scholar 

  • Zhang Q, Li F, Wang B, Zhang J, Liu Y, Zhou Q, Xiang J (2007) The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression. Dev Comp Immunol 31:429–440

    PubMed  CAS  Google Scholar 

  • Zhang M, Wang H, Li D, Xu X (2009a) A novel focal adhesion kinase from Marsupenaeus japonicus and its response to WSSV infection. Dev Comp Immunol 33:533–539

    PubMed  CAS  Google Scholar 

  • Zhao Z-Y, Yin Z-X, Weng S-P, Guan H-J, Li S-D, Xing K, Chan S-M, He J-G (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol 22:520–534

    PubMed  CAS  Google Scholar 

Further reading

  • Barracco MA, Rosa RD (2009) On shrimp interferon. Aquaculture 298:182

    Google Scholar 

  • Cerenius L, Liu H, Zhang Y, Rimphanitchayakit V, Tassanakajon A Gunnar AnderssonM, Söderhäll K, Söderhäll I (2010) High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans. Dev Comp Immunol 34:69–75

  • Chen KY, Hsu TC, Huang PY, Kang ST, Lo CF, Huang WP, Chen LL (2009) Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 27:460–465

    PubMed  CAS  Google Scholar 

  • Chou PH, Chang HS, Chen IT, Lin HY, Chen YM, Yang HL, Wang KCHC (2009) The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev Comp Immunol 33:1258–1267

    PubMed  CAS  Google Scholar 

  • García JC, Reyes A, Salazar M, Granja CB (2009) Differential gene expression in white spot syndrome virus (WSSV)-infected naïve and previously challenged Pacific white shrimp Penaeus (Litopenaeus) vannamei. Aquaculture 289:253–258

    Google Scholar 

  • Kong HJ, Cho HK, Park EM, Hong GE, Kim YO, Nam BH, Kim WJ, Lee SJ, Han HS, Jang IK, Lee CH, Cheong J, Choi TJ (2009) Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 26:109–114

    PubMed  CAS  Google Scholar 

  • Labreuche Y, O'Leary NA, de la Vega E, Veloso A, Gross PS, Chapman RW, Browdy CL, Warr GW (2009) Lack of evidence for Litopenaeus vannamei Toll receptor (lToll) involvement in activation of sequence-independent antiviral immunity in shrimp. Dev Comp Immunol 33:806–810

    PubMed  CAS  Google Scholar 

  • Li F, Yan H, Wang D, Priya TAJ, Li S, Wang B, Zhang J, Xiang J (2009) Identification of a novel relish homolog in Chinese shrimp Fenneropenaeus chinensis and its function in regulating the transcription of antimicrobial peptides. Dev Comp Immunol 33:1093–1101

    PubMed  CAS  Google Scholar 

  • Lin YC, Lee F, Wu CL, Chen JC (2010) Molecular cloning and characterization of a cytosolic manganese superoxide dismutase (cytMnSOD) and mitochondrial manganese superoxide dismutase (mtMnSOD) from the kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 28:143–150

    PubMed  CAS  Google Scholar 

  • Liu H, Söderhäll K, Jiravanichpaisal P (2009b) Antiviral immunity in crustaceans. Fish Shellfish Immunol 27:79–88

    Google Scholar 

  • Ma H, Wang B, Zhang J, Li F, Xiang J (2010) Multiple forms of alpha-2 macroglobulin in shrimp Fenneropenaeus chinesis and their transcriptional response to WSSV or Vibrio pathogen infection. Dev Comp Immunol. (In press)

  • Mai Wj (2009) Responses to the letter: on shrimp interferon. Aquaculture 298:183

    Google Scholar 

  • Mai W, Hu CQ, Wang W (2009) In vitro activation of the antibacterial activity by virus-resistant shrimp (Marsupenaeus japonicus) recombinant interferon-like protein. Aquaculture 288:140–142

    CAS  Google Scholar 

  • Prapavorarat A, Pongsomboon S, Tassanakajon A (2010) Identification of genes expressed in response to yellow head virus infection in the black tiger shrimp, Penaeus monodon, by suppression subtractive hybridization. Dev Comp Immunol. (In press)

  • Ren Q, Du ZQ, Zhao XF, Wang JX (2009a) An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 27:739–747

    PubMed  CAS  Google Scholar 

  • Ren Q, Zhang RR, Zhao XF, Wang JX (2009b) A thioredoxin response to the WSSV challenge on the Chinese white shrimp. Fenneropenaeus chinensis. Comp Biochem Physiol C Toxicol Pharmacol 151:92–98

    PubMed  Google Scholar 

  • Robalino J, Carnegie RB, O'Leary N, Ouvry-Patat SA, de la Vega E, Prior S, Gross PS, Browdy CL, Chapman RW, Schey KL, Warr G (2009b) Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei. Vet Immunol Immunopathol 15:110–118

    Google Scholar 

  • Rosa RD, Barracco MA (2008) Shrimp interferon is rather a portion of the mitochondrial F0-ATP synthase than a true [alpha]-interferon. Mol Immunol 45:3490–3493

    PubMed  CAS  Google Scholar 

  • Shi XZ, Zhang RR, Jia YP, Zhao XF, Yu XQ, Wang JX (2009) Identification and molecular characterization of a spätzle-like protein from Chinese shrimp (Fenneropenaeus chinensis). Fish Shellfish Immunol 27:610–617

    Google Scholar 

  • Tonganunt M, Saelee N, Chotigeat W, Phongdara A (2009) Identification of a receptor for activated protein kinase C1 (Pm-RACK1), a cellular gene product from black tiger shrimp (Penaeus monodon) interacts with a protein, VP9 from the white spot syndrome virus. Fish Shellfish Immunol 26:509–514

    PubMed  CAS  Google Scholar 

  • Wang H, Ma J, Ruan L, Xu X (2009a) Cloning of a centaurin- α1 like gene MjCent involved in WSSV infection from shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 26:279–284

    PubMed  Google Scholar 

  • Wang XW, Xu WT, Zhang XW, Zhao XF, Yu XQ, Wang JX (2009b) A C-type lectin is involved in the innate immune response of Chinese white shrimp. Fish Shellfish Immunol 27:556–562

    PubMed  CAS  Google Scholar 

  • Wang KCHC, Tseng CW, Lin HY, Chen IT, Chen YH, Chen YM, Chen TY, Yang HL (2010) RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34:49–58

    Google Scholar 

  • Xu H, Yan F, Deng X, Wang J, Zou T, Ma X, Zhang X, Qi Y (2009) The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent. Fish Shellfish Immunol 26:414–421

    PubMed  CAS  Google Scholar 

  • Zhang M, Ma J, Lei K, Xu X (2010) Molecular cloning and characterization of a class II ADP ribosylation factor from the shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 28:128–133

    Google Scholar 

  • Zhang Y, Qiu L, Song L, Zhang H, Zhao J, Wang L, Yu Y, Li C, Li F, Xing K, Huang B (2009b) Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish Shellfish Immunol 26:183–192

    PubMed  CAS  Google Scholar 

  • Zhao ZY, Yin ZX, Xu XP, Weng SP, Rao XY, Dai ZX, Luo YW, Yang G, Li ZS, Guan HJ, Li SD, Chan SM, Yu XQ, He JG (2009) A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 83:347–356

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our great admiration for the major role played by Paul Gross in improving our understanding of the shrimp molecular response to viral pathogens, and for his braveness and dedication in pursuit of this goal, despite his failing health. The work of our group is supported by Mahidol University and the Thai National Center for Genetic Engineering and Biotechnology (BIOTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Flegel.

Addendum

Addendum

Because a year has passed since submission of the original version of our review, a number of papers in press at the time have been published and we have been able to update these citations with volume and page numbers. However, many other relevant papers were published in 2009–2010 that were unaware of at the time of writing the manuscript. Thus, we have prepared this brief addendum to present a selection of them in order of the headings in our review.

First we would like to cite three reviews, one on antiviral immunity in crustaceans that appeared after we had submitted our manuscript (Liu et al. 2009b), another on functional genomic and proteomic studies on immunity in P. vannamei (Robalino et al. 2009b) and another on sequence analysis of Kazal-type proteinase inhibitors in crustaceans (Cerenius et al. 2010). There have also been two notable global studies on gene expression response, one to yellow head virus (YHV) in P. monodon (Prapavorarat et al. 2010) and one to white spot syndrome virus (WSSV) in naïve and previously challenged P. vannamei (García et al 2009). With respect to binding with viral structural proteins, there has been an additional publication on interaction of P. monodon chitin-binding protein (PmCBP) with VP53A and other WSSV envelope proteins (Chen et al. 2009). This included results on a protective affect against mortality from WSSV by administration of recombinant VP53A and on immunoreactivity of a protein from P. vannamei to PmCBP antibody. In another report, VP28 was shown to bind to shrimp heat-shock cognate protein 70 (Hsc70) in the cytoplasm of hemocytes in a manner dependent on ATP and on Hsc70 concentration (Xu et al. 2009).

With respect to pattern recognition molecules, a very exciting development was the discovery in shrimp of a unique homologue of the Down syndrome cell adhesion molecule (Dscam) gene in P. vannamei (Chou et al. 2009). Dscam is a member of the immunoglobulin super-family that can be generated in thousands of variable forms by alternative splicing of exons. Its invertebrate homologues were initially studied in the context of specific axonal guidance in the developing nervous system, but later studies suggested that it might play a role in adaptive immunity. Other publications focused on aspects of the ProPO pathway (Kong et al. 2009; Ma et al. 2010) and on the Toll pathway (Labreuche et al. 2009; Li et al. 2009; Shi et al. 2009; Wang et al. 2010). There were two publications on antioxidant enzymes (Lin et al. 2010; Ren et al. 2009a, b) and three on lectins (Wang et al. 2009a, b; Zhang et al. 2009a, b; Zhao et al. 2009).

In terms of miscellaneous molecules, an acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) from the Chinese white shrimp P. (Fenneropenaeus) chinensis were both reported to be up-regulated after WSSV challenge (Ren et al. 2009a, b). A receptor for activated protein kinase C1 (Pm-RACK1) from P. monodon was reported to be upreglated upon WSSV challenge and to interact with WSSV nonstructural protein VP9 (Tonganunt et al. 2009). A Centaurin-α1 like GTPase-activating protein (GAP) of ADP-ribosylation factor (ARF6) was found to be up-regulated in WSSV sensitive shrimp, but not in WSSV resistant shrimp (Wang et al. 2009a, b). In a related study, an ARF from P. (Marsupenaeus) japonicus was also reported to be up-regulated upon WSSV challenge (Zhang et al. 2010). Finally, there have been conflicting reports on the occurrence of an interferon-like protein in P. japonicas and on its role in response to WSSV infection (Barracco and Rosa 2009; Mai et al. 2009; Mai 2009; Rosa and Barracco 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flegel, T.W., Sritunyalucksana, K. Shrimp Molecular Responses to Viral Pathogens. Mar Biotechnol 13, 587–607 (2011). https://doi.org/10.1007/s10126-010-9287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9287-x

Keywords

Navigation