Skip to main content
Log in

Sulfide:quinone Oxidoreductase from Echiuran Worm Urechis unicinctus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) has been identified to be responsible for the initial oxidation of sulfide in mitochondria. In this study, full-length SQR cDNA was cloned from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The protein consisted of 451 amino acids with a theoretical pI of 8.98 and molecular weight of 50.5 kDa. Subsequently, the SQR mRNA expression in different tissues was assessed by real-time reverse transcription and polymerase chain reaction and showed that the highest expression was in midgut, followed by anal sacs and coelomic fluid cells, and then body wall and hindgut. Furthermore, activated SQR was obtained by dilution refolding of recombinant SQR expression in E. coli, and the refolded product showed optimal activity at 37 °C and pH 8.5 and K m for ubiquinone and sulfide at 15.6 µM and 40.3 µM, respectively. EDTA and GSH had an activating effect on refolded SQR, while Zn2+ caused decreased activity. Western blot showed that SQR in vivo was located in mitochondria and was ∼10 kDa heavier than the recombinant protein. In addition, SQR, detected by immunohistochemistry, was mainly located in the epithelium of all tissues examined. Ultrastructural observations of these tissues’ epithelium by transmission electron microscopy provided indirect cytological evidence for its mitochondrial location. Interesting aspects of the U. unicinctus SQR amino acid sequence, its catalytic mechanism, and the different roles of these tissues in sulfide metabolic adaptation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arp AJ, Menon JG, Julian D (1995) Multiple mechanisms provide tolerance to environmental sulfide in Urechis caupo. Integr Comp Biol 35:132–144

    Article  CAS  Google Scholar 

  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62

    Article  CAS  Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:248–254

    CAS  Google Scholar 

  • Brito JA, Sousa FL, Stelter M, Bandeiras TM, Vonrhein C, Teixeira M, Pereira MM, Archer M (2009) Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry 48:5613–5622

    Article  PubMed  CAS  Google Scholar 

  • Bronstein M, Schütz M, Hauska G, Padan E, Shahak Y (2000) Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182:3336–3344

    Article  PubMed  CAS  Google Scholar 

  • Carrico RJ, Blumberg WE, Peisach J (1978) The reversible binding of oxygen to sulfhemoglobin. J Biol Chem 253:7212–7215

    PubMed  CAS  Google Scholar 

  • Chen ZW, Jiang CY, She Q, Liu SJ, Zhou PJ (2005) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71:621–628

    Article  PubMed  CAS  Google Scholar 

  • Dorner AJ, Bole DG, Kaufman RJ (1987) The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins. J Cell Biol 105:2665–2674

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Evans CL (1967) The toxicity of hydrogen sulphide and other sulphides. J Exp Physiol 52:231–248

    CAS  Google Scholar 

  • Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277:10064–10072

    Article  PubMed  CAS  Google Scholar 

  • Gieselmann V, Schmidt B, Von Figura K (1992) In vitro mutagenesis of potential N-glycosylation sites of arylsulfatase A. Effects on glycosylation, phosphorylation, and intracellular sorting. J Biol Chem 267:13262–13266

    PubMed  CAS  Google Scholar 

  • Griesbeck C, Hauska G, Schütz M (2000) Biological sulfide oxidation:sulfide-quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent research developments in microbiology vol 4, rearch signpost. Trivadrum, India, pp 179–203

    Google Scholar 

  • Griesbeck C, Schütz M, Schodl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565

    Article  PubMed  CAS  Google Scholar 

  • Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53

    Article  PubMed  CAS  Google Scholar 

  • Hance JM, Andrzejewski JE, Predmore BL, Dunlap KJ, Misiak KL, Julian D (2008) Cytotoxicity from sulfide exposure in a sulfide-tolerant marine invertebrate. J Exp Mar Biol 359:102–109

    Article  CAS  Google Scholar 

  • Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9:500

    Article  PubMed  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008a) Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina. J Exp Biol 211:2617–2623

    Article  PubMed  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008b) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Castañoa L, Villamiel M, López-Fandiño R (2007) Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass. Food Hydrocoll 21:433–443

    Article  Google Scholar 

  • Joyner-Matos J, Predmore BL, Stein JR, Leeuwenburgh C, Julian D (2010) Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate. Physiol Biochem Zool. doi:10.1086/597529 (in press)

    PubMed  Google Scholar 

  • Julian D, April KL, Patel S, Stein JR, Wohlgemuth SE (2005) Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate. J Exp Biol 208:4109–4122

    Article  PubMed  CAS  Google Scholar 

  • Kraus D, Doeller J, Powell C (1996) Sulfide may directly modify cytoplasmic hemoglobin deoxygenation in Solemya reidi gills. J Exp Biol 199:1343–1352

    PubMed  CAS  Google Scholar 

  • Ma ZJ, Bao ZM, Kang KH, Yu L, Zhang ZF (2005) The changes of three components in coelomic fluid of Urechis unicinctus exposed to different concentrations of sulfide. Chin J Oceanol Limnol 23:104–109

    Article  CAS  Google Scholar 

  • Marcia M, Ermler U, Peng G, Michel H (2009) The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Proc Natl Acad Sci U S A 106:9625–9630

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Boime I (1988) The role of the asparagine-linked oligosaccharides of the alpha subunit in the secretion and assembly of human chorionic gonadotrophin. J Cell Biol 106:1049–1059

    Article  PubMed  CAS  Google Scholar 

  • Menon JG, Arp AJ (1992) Morphological adaptations of the respiratory hindgut of a marine echiuran worm. J Morphol 214:131–138

    Article  Google Scholar 

  • Menon JG, Arp AJ (1993) The integument of the marine echiuran worm Urechis caupo. J Morphol 185:440–454

    Google Scholar 

  • Menon J, Arp AJ (1998) Ultrastructural evidence of detoxification in the alimentary canal of Urechis caupo. Integr Biol 117:307–317

    Google Scholar 

  • Nicholls P (1975) The effect of sulphide on cytochrome aa3 isosteric and allosteric shifts of the reduced alpha-peak. Biochim Biophys Acta 396:24–35

    Article  PubMed  CAS  Google Scholar 

  • Nicholls P, Kim JK (1982) Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Biochem Cell Biol 60:613–623

    Article  CAS  Google Scholar 

  • Olden K, Parent JB, White SL (1982) Carbohydrate moieties of glycoproteins a re-evaluation of their function. BBA-Rev Biomembranes 650:209–232

    CAS  Google Scholar 

  • Powell MA, Arp AJ (1989) Hydrogen sulfide oxidation by abundant nonhemoglobin heme compounds in marine invertebrates from sulfide-rich habitats. J Exp Zool 249:121–132

    Article  CAS  Google Scholar 

  • Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169:164–181

    Article  CAS  Google Scholar 

  • Powell MA, Somero GN (1986) Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi. Science 233:563–566

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (1987) NADP+-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol Plant 71:393–400

    Article  CAS  Google Scholar 

  • Schroff G, Schöttler U (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). J Comp Physiol B 116:325–336

    Article  CAS  Google Scholar 

  • Shibata H, Kobayashi S (2006) Characterization of a HMT2-like enzyme for sulfide oxidation from Pseudomonas putida. Can J Microbiol 52:724–730

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Suzuki K, Kobayashi S (2007) Menaquinone reduction by an HMT2-like sulfide dehydrogenase from Bacillus stearothermophilus. Can J Microbiol 53:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Martin W (2008) Sulfide:quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide-and thioredoxin-dependent activity. FEBS J 275:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Hoffmeister M, Grieshaber M, Martin W (2003) Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 20:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Vande Weghe JG, Ow DW (1999) A fission yeast gene for mitochondrial sulfide oxidation. J Bio Chem 274:13250–13257

    Article  CAS  Google Scholar 

  • Völkel S, Grieshaber MK (1997) Sulphide oxidation and oxidative phosphorylation in the mitochondria of the lugworm Arenicola marina. J Exp Biol 200:83–92

    Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth SE, Taylor AC, Grieshaber MK (2000) Ventilatory and metabolic responses to hypoxia and sulphide in the lugworm Arenicola marina (L.). J Exp Biol 203:3177–3188

    PubMed  CAS  Google Scholar 

  • Zhang ZF, Wang SF, Huo JG, Shao MY, Kang KH (2006) Adaptation of respiratory metabolism to sulfide exposure in Urechis unicinctus. Period Ocean Univ China 36:639–644 (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jianxin Sui for technical assistance in polyclonal antibody preparation. This work is supported by the Natural Science Foundation of China (NSFC) [40776074].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, YB., Zhang, ZF., Shao, MY. et al. Sulfide:quinone Oxidoreductase from Echiuran Worm Urechis unicinctus . Mar Biotechnol 13, 93–107 (2011). https://doi.org/10.1007/s10126-010-9273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9273-3

Keywords

Navigation