Skip to main content

Advertisement

Log in

Comparison of the Bacterial Communities of Wild and Captive Sponge Clathria prolifera from the Chesapeake Bay

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The red-beard sponge Clathria prolifera, which is widely distributed in the USA, has been widely used as a model system in cell biology and has been proposed as a suitable teaching tool on biology and environmental sciences. We undertook the first detailed microbiological study of this sponge on samples collected from the Chesapeake Bay. A combination of culture-based studies, denaturing gradient gel electrophoresis, and bacterial community characterization based on 16S rRNA gene sequencing revealed that C. prolifera contains a diverse assemblage of bacteria that is different from that in the surrounding water. C. prolifera individuals were successfully maintained in a flow-through or recirculation aquaculture system for over 6 months and shifts in the bacterial assemblages of sponges in aquaculture compared with wild sponges were examined. The proteobacteria, bacteroidetes, actinobacteria, and cyanobacteria represented over 90% of the species diversity present in the total bacterial community of the wild C. prolifera. Actinobacteria, cyanobacteria, and spirochetes were not represented in clones obtained from C. prolifera maintained in the aquaculture system although these three groups comprised ca. 20% of the clones from wild C. prolifera, showing a significant effect of aquaculture on the bacterial community composition. This is the first systematic characterization of the bacterial community from a sponge found in the Chesapeake Bay. Changes in sponge bacterial composition were observed in sponges maintained in aquaculture and demonstrate the importance of monitoring microbial communities when cultivating sponges in aquaculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azam F, Worden AZ (2004) Oceanography: microbes, molecules, and marine ecosystems. Science 303:1622–1624

    Article  CAS  PubMed  Google Scholar 

  • Bagby RM (1972) Formation and differentiation of the upper pinacoderm in reaggregation masses of the sponge Microciona prolifera (Ellis and Solander). J Exp Zool 180:217–225

    Article  CAS  PubMed  Google Scholar 

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Article  Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722

    Article  CAS  PubMed  Google Scholar 

  • Capon RJ, Miller M, Rooney F (2000) Clathrins A–C: metabolites from a Southern Australian marine sponge, Clathria species. J Nat Prod 63:821–824

    Article  CAS  PubMed  Google Scholar 

  • Capon RJ, Miller M, Rooney F (2001) Mirabilin G: a new alkaloid from a southern Australian marine sponge, Clathria species. J Nat Prod 64:643–644

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ, Yang SS (2006) Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J Nat Prod 69:488–498

    Article  CAS  PubMed  Google Scholar 

  • Der Marderosian AH (1970) Drugs from the sea—an overview. In: Youngken HW Jr (ed) Drugs from the sea proceedings 1969. Marine Technology Society, Washington, DC

    Google Scholar 

  • Faulkner DJ, Harper MK, Haygood MG, Salomon CE, Schmidt EW (2000) Symbiotic bacteria in sponges: sources of bioactive substances. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 107–119

    Chapter  Google Scholar 

  • Fernandez-Busquets X, Gerosa D, Hess D, Burger MM (1998) Accumulation in marine sponge grafts of the mRNA encoding the main proteins of the cell adhesion system. J Biol Chem 273:29545–29553

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  PubMed  Google Scholar 

  • Guerardel Y, Czeszak X, Sumanovski LT, Karamanos Y, Popescu O, Strecker G, Misevic GN (2004) Molecular fingerprinting of carbohydrate structure phenotypes of three porifera proteoglycan-like glyconectins. J Biol Chem 279:15591–15603

    Article  CAS  PubMed  Google Scholar 

  • Hart JB, Lill RE, Hichford SJH, Blunt JW, Munro MHG (2000) The halichondrins: chemistry, biology, supply and delivery. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 134–153

    Chapter  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    CAS  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Müller WEG (ed) Sponges (Porifera). Springer, Berlin, pp 59–88

    Google Scholar 

  • Hill RA (2004a) Marine natural products. Ann Rep Prog Chem Sec B Org Chem 100:169–189

    Article  CAS  Google Scholar 

  • Hill RT (2004b) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, pp 177–190

    Google Scholar 

  • Hooper JNA, Van Soest RWM (eds) (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic, New York

    Google Scholar 

  • Imhoff JF, Stohr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. Prog Mol Subcell Biol 37:35–57

    CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Kaltenbach JC, Kuhns WJ, Simpson TL, Burger MM (1999) Intense concanavalin A staining and apoptosis of peripheral flagellated cells in larvae of the marine sponge Microciona prolifera: significance in relation to morphogenesis. Biol Bull 197:271–273

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:8305–8308

    Article  Google Scholar 

  • Krug PJ (2006) Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Prog Mol Subcell Biol 42:1–53

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lee YK, Lee J-H, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264

    Google Scholar 

  • Lippson AJ, Lippson RL (1997) Life in the Chesapeake Bay. The Johns Hopkins, Baltimore

    Google Scholar 

  • Litchfield C, Liaaen-Jensen S (1980) Carotenoids of the marine sponge Microciona prolifera. Comp Biochem Physiol B 66:359–366

    Article  Google Scholar 

  • Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008a) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008b) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG, Wimmer W, Schatton W, Böhm M, Batel R, Filic Z (1999) Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: example, Geodia cydonium. Mar Biotechnol (NY) 1:569–579

    Article  Google Scholar 

  • Munro MH, Blunt JW, Dumdei EJ, Hickford SJ, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotech 33:539–544

    Article  CAS  Google Scholar 

  • Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50

    Article  CAS  PubMed  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Proksch P (1994) Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655

    Article  CAS  PubMed  Google Scholar 

  • Ruby E, Henderson B, McFall-Ngai M (2004) Microbiology: we get by with a little help from our (Little) friends. Science 303:1305–1307

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977

    Article  CAS  Google Scholar 

  • Sliwka HR, Nokleby OW, Liaaen-Jensen S (1987) Animal carotenoids. 31. Structure elucidation of a sponge metabolite via mesylate elimination. Acta Chem Scand B 41:245–252

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  CAS  PubMed  Google Scholar 

  • Tepsuporn S, Kaltenbach JC, Kuhns WJ, Burger MM, Fernandez-Busquets X (2003) Apoptosis in Microciona prolifera allografts. Biol Bull 205:199–201

    Article  CAS  PubMed  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Wichels A, Würtz S, Döpke H, Schütt C, Gerdts G (2006) Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microb Ecol 56:102–118

    Article  CAS  Google Scholar 

  • Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

Download references

Acknowledgments

George Burbanck and Robert Jordan at Hampton University are thanked for assistance in Chesapeake Bay collections. LTI was supported by Goucher College during a sabbatical leave. Her research was supported by a Florence Seibert Research Fellowship, a Goucher College faculty development grant, and the MacLane-To fund. TLW was funded by the NIGMS Bridges to the Baccalaureate grant GM62005. LN and PV participated in the project as part of a Directed Research course in Microbiology at Goucher College. Funding for this study was provided by the Microbial Observatories Program, National Science Foundation (MCB-0238515 and 0703467), and this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell T. Hill.

Additional information

Contribution no. 07-118 from the Center of Marine Biotechnology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, L.T., Kan, J., Nguyen, L. et al. Comparison of the Bacterial Communities of Wild and Captive Sponge Clathria prolifera from the Chesapeake Bay. Mar Biotechnol 11, 758–770 (2009). https://doi.org/10.1007/s10126-009-9192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9192-3

Keywords

Navigation