Skip to main content
Log in

Thermal Sensitivity of Mitochondrial Respiration Efficiency and Protein Phosphorylation in the Clam Mercenaria mercenaria

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15°C, 18°C, and 21°C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18°C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    PubMed  CAS  Google Scholar 

  • Augereau O, Claverol S, Boudes N, Basurko MJ, Bonneu M, Rossignol R, Mazat JP, Letellier T, Dachary-Prigent J (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Molec Life Sci 62:1478–1488

    Article  PubMed  CAS  Google Scholar 

  • Bai XC, Liu AL, Deng F, Zou ZP, Bai J, Ji QS, Luo SQ (2002) Phospholipase C-gamma 1 is required for survival in heat stress: involvement of protein kinase C-dependent Bcl-2 phosphorylation. J Biochem 131:207–212

    PubMed  CAS  Google Scholar 

  • Ballantyne JS, Moyes CD (1987) The effects of salinity acclimation on the osmotic properties of mitochondria from the gill of Crassostrea virginica. J Exp Biol 133:449–456

    Google Scholar 

  • Ballantyne JS, Storey KB (1984) Mitochondria from the hepatopancreas of the marine clam Mercenaria mercenaria: substrate preferences and salt and pH effects on the oxidation of palmitoyl-l-carnitine and succinate. J Exp Zool 230:165–174

    Article  PubMed  CAS  Google Scholar 

  • Boneh A (2006) Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms. Cell Mol Life Sci 63:1236–1248

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buckley BA, Hofmann GE (2004) Magnitude and duration of thermal stress determine kinetics of hsp gene regulation in the goby Gillichthys mirabilis. Physiol Biochem Zool 77:570–581

    Article  PubMed  CAS  Google Scholar 

  • Bykova NV, Egsgaard H, Moller IM (2003) Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540:141–146

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    PubMed  CAS  Google Scholar 

  • Cherkasov AS, Biswas PK, Ridings DM, Ringwood AH, Sokolova IM (2006) Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses. J Exp Biol 209:1274–1284

    Article  PubMed  CAS  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. In: ER W, Pullman ME (eds) Oxidation and phosphorylation. Academic, New York

    Google Scholar 

  • Fernando P, Megeney LA, Heikkila JJ (2003) Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery. Exp Cell Res 286:175–185

    Article  PubMed  CAS  Google Scholar 

  • Hardewig I, Peck LS, Pörtner HO (1999) Thermal sensitivity of mitochondrial function in the Antarctic notothenioid Lepidonotothen nudifrons. J Comp Physiol B 169:597–604

    Article  Google Scholar 

  • Heise K, Puntarulo S, Pörtner HO, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Phys C 134:79–90

    Article  CAS  Google Scholar 

  • Helmuth BS, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384

    Article  PubMed  CAS  Google Scholar 

  • Hofmann G, Somero G (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J Exp Biol 198:1509–1518

    PubMed  CAS  Google Scholar 

  • Hofmann GE, Somero GN (1996) Interspecific variation in thermal denaturation of proteins in the congeneric mussels Mytilus trossulus and M. galloprovincialis: evidence from the heat shock response and protein ubiquitination. Mar Biol 126:65–75

    Article  CAS  Google Scholar 

  • Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 31:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radical Bio Med 38:2–11

    Article  CAS  Google Scholar 

  • Ito Y, Mishra NC, Yoshida K, Kharbanda S, Saxena S, Kufe D (2001) Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Differ 8:794–800

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Bykova NV, Moller IM (2007) Protein phosphorylation in plant mitochondria. Physiol Plantarum 129:90–103

    Article  CAS  Google Scholar 

  • Kefaloyianni E, Gourgou E, Ferle V, Kotsakis E, Gaitanaki C, Beis I (2005) Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38–MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.). J Exp Biol 208:4427–4436

    Article  PubMed  CAS  Google Scholar 

  • Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C, Kufe D (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275:322–327

    Article  PubMed  CAS  Google Scholar 

  • Korotchkina LG, Patel MS (1995) Mutagenesis studies of the phosphorylation sites of recombinant human pyruvate dehydrogenase—site specific regulation. J Biol Chem 270:14297–14304

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270:5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Huttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100

    Article  PubMed  CAS  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969a) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    Article  PubMed  CAS  Google Scholar 

  • Linn TC, Pettit FH, Hucho F, Reed LJ (1969b) Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proc Natl Acad Sci USA 64:227–234

    Article  PubMed  CAS  Google Scholar 

  • Lund SG, Ruberte MR, Hofmann GE (2006) Turning up the heat: the effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Phys A 143:435–446

    Article  CAS  Google Scholar 

  • MacDonald JA, Storey KB (2006) Identification of a 115 kDa MAP-kinase activated by freezing and anoxic stresses in the marine periwinkle, Littorina littorea. Arch Biochem Biophys 450:208–214

    Article  PubMed  CAS  Google Scholar 

  • Marillia EF, Micallef BJ, Micallef M, Weninger A, Pedersen KK, Zou JT, Taylor DC (2003) Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase. J Exp Bot 54:259–270

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160:709–718

    Article  PubMed  CAS  Google Scholar 

  • Nowak G, Bakajsova D, Clifton GL (2004) Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells. Am J Physiol Renal 286:F307–F316

    Article  CAS  Google Scholar 

  • Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage. Trends Biochem Sci 31:26–34

    Article  PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE (2005) Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19:197–207

    Article  PubMed  CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2006) Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222

    Article  PubMed  CAS  Google Scholar 

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  PubMed  Google Scholar 

  • Pestov NA, Kulakovskaya TV, Kulaev IS (2004) Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess. FEMS Yeast Res 4:643–648

    Article  PubMed  CAS  Google Scholar 

  • Philipp E, Pörtner HO, Abele D (2005) Mitochondrial ageing of a polar and a temperate mud clam. Mech Age Dev 126:610–619

    Article  CAS  Google Scholar 

  • Pilatus U, Mayer A, Hildebrandt A (1989) Nuclear polyphosphate as a possible source of energy during the sporulation of Physarum polycephalum. Arch Biochem Biophys 275:215–223

    Article  PubMed  CAS  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  PubMed  Google Scholar 

  • Pörtner HO (2002) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230

    PubMed  Google Scholar 

  • Pörtner HO, Hardewig I, Peck LS (1999) Mitochondrial function and critical temperature in the Antarctic bivalve, Laternula elliptica. Comp Biochem Phys A 124:179–189

    Article  Google Scholar 

  • Prieto-Martin A, Montoya J, Martinez-Azorin F (2004) Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA. Nucl Acids Res 32:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Roberts DA, Hofmann GE, Somero GN (1997) Heat-shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol Bull 192:309–320

    Article  CAS  Google Scholar 

  • Sagarin RD, Somero GN (2006) Complex patterns of expression of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytilus californianus and snail Nucella ostrina. J Biogeogr 33:622–630

    Article  Google Scholar 

  • Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. BBA-Mol Cell Res 1589:181–195

    CAS  Google Scholar 

  • Salvi M, Stringaro A, Brunati AM, Agostinelli E, Arancia G, Clari G, Toninello A (2004) Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cell Mol Life Sci 61:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Sanders BM, Hope C, Pascoe VM, Martin LS (1991) Characterization of the stress protein response in 2 species of Collisella limpets with different temperature tolerances. Physiol Zool 64:1471–1489

    CAS  Google Scholar 

  • Sokolova IM (2004) Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). J Exp Biol 207:2639–2648

    Article  PubMed  CAS  Google Scholar 

  • Sommer A, Pörtner HO (1999) Exposure of Arenicola marina to extreme temperatures: adaptive flexibility of a boreal and a subpolar population. Mar Ecol Prog Ser 181:215–226

    Article  Google Scholar 

  • Szela TL, Marsh AG (2005) Microtiter plate, optode respirometry, and inter-individual variance in metabolic rates among nauplii of Artemia sp. Mar Ecol Prog Ser 296:281–289

    Article  Google Scholar 

  • Technikova-Dobrova Z, Sardanelli AM, Speranza F, Scacco S, Signorile A, Lorusso V, Papa S (2001) Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. Biochem 40:13941–13947

    Article  CAS  Google Scholar 

  • Thomson M (2002) Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci 59:213–219

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    PubMed  Google Scholar 

  • Weinstein RB, Somero GN (1998) Effects of temperature on mitochondrial function in the Antarctic fish Trematomus bernacchii. J Comp Physiol B 168:190–196

    Article  CAS  Google Scholar 

  • Yamagishi N, Ishihara K, Salto Y, Hatayama T (2003) Hsp105 but not Hsp70 family proteins suppress the aggregation of heat-denatured protein in the presence of ADP. FEBS Lett 555:390–396

    Article  PubMed  CAS  Google Scholar 

  • Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17:2364–2370

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zhao YG, Gilmore R, Leone G, Coffey MC, Weber B, Lee PWK (2001) Hsp90 phosphorylation is linked to its chaperoning function—assembly of the reovirus cell attachment protein. J Biol Chem 276:32822–32827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Ewart for providing the clams for these experiments. We would like to acknowledge Dr. T. Hanson for his assistance with the protein phosphorylation experiments. This work was supported by SeaGrant R/B-43 and NSF grant #0238281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, P.N., Marsh, A.G. Thermal Sensitivity of Mitochondrial Respiration Efficiency and Protein Phosphorylation in the Clam Mercenaria mercenaria . Mar Biotechnol 11, 608–618 (2009). https://doi.org/10.1007/s10126-009-9177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9177-2

Keywords

Navigation