Skip to main content
Log in

Characterization and its Potential Application of Two Esterases Derived from the Arctic Sediment Metagenome

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Two esterase genes (designated as estAT1 and estAT11, respectively) were cloned by activity-based screening of a fosmid library constructed with seashore sediment sample of the Arctic. The sequence analysis of the genes revealed that these esterase genes encoded proteins of 303 and 312 amino acids, respectively, and showed 40–50% identities to members of the hormone-sensitive lipase (HSL) family retaining a catalytic triad with a conserved GDSAG sequence and an oxyanion hole (HGGG). The esterases genes were overexpressed in Escherichia coli by co-expressing GroEL-GroES chaperonine, and the recombinant proteins (rEstAT1 and rEstAT11) were purified to homogeneity. The purified EstAT1 and EstAT11 were active in a broad range of temperature from 20 to 40°C with an optimum temperature at 30°C. The activation energies of rEstAT1 and rEstAT11 to hydrolyze p-nitrophenyl esters of butyrate were determined to be 12.65 kcal/mol and 11.26 kcal/mol, respectively, indicating that they are cold-adapted esterases. The purified EstAT1 and EstAT11 could hydrolyze racemic ofloxacin esters, and further rEstAT11 hydrolyzed preferentially (S)-racemic ofloxacin butyl ester with an enantiomeric excess (eep) value of 70.3%. This work represents an example that develops enzymes from the Arctic using metagenomic approach, potentially applicable to chiral resolution of heat-labile substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agranat I, Caner H, Caldwell J (2002) Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov 1:753–768

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analysis of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  • Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, Reymond JL, Jaeger KE, Streit WR (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72:3637–3645

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos GM, Wennersten CB, Moellering RC (1996) Comparative in vitro activity of levofloxacin and ofloxacin against Gram-positive bacteria. Diagn Microbiol Infect Dis 25:35–41

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Mitsuhashi S (1990) In vitro antibacterial activity of DR-3355, the S-(2)-isomer of ofloxacin. Chemotherapy (Tokyo) 36:268–276

    CAS  Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163

    Article  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Hayakawa I, Atarashi S, Yokohama S, Imamura M, Sakano K, Furukawa M (1986) Synthesis and antibacterial activities of optically active ofloxacin. Antimicrob Agents Chemother 29:163–164

    PubMed  CAS  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Rou Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    Article  PubMed  CAS  Google Scholar 

  • Hwang YO, Kang SG, Woo JH, Kwon KK, Sato T, Lee EY, Han MS, Kim SJ (2008) Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Mar Biotechnol 10:366–373

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  PubMed  CAS  Google Scholar 

  • Kim JT, Kang SG, Woo JH, Lee JH, Jeong BC, Kim SJ (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74:820–828

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65:720–726

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol UT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–1131

    PubMed  CAS  Google Scholar 

  • Park SY, Kim JT, Kang SG, Woo JH, Lee JH, Choi HT, Kim SJ (2007) A new esterase showing similarity to putative dienelactone hydrolase from a strict marine bacterium, Vibrio sp. GMD509. Appl Microbiol Biotechnol 77:107–115

    Article  PubMed  CAS  Google Scholar 

  • Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825

    Article  PubMed  CAS  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space forenantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 2, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 8.65–8.71

    Google Scholar 

  • Schaeffer AJ (2002) The expanding role of fluoroquinolones. Am J Med 113:45–54

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  PubMed  CAS  Google Scholar 

  • Solbak AI, Richardson TH, McCann RT, Kline KA, Bartnek F, Tomlinson G, Tan X, Parra-Gessert L, Frey GJ, Podar M, Luginbuhl P, Gray KA, Mathur EJ, Robertson DE, Burk MJ, Hazlewood GP, Short JM, Kerovuo J (2005) Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J Biol Chem 280:9431–9438

    Article  PubMed  CAS  Google Scholar 

  • Steele HL, Streit WR (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 247:105–111

    Article  PubMed  CAS  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics: the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  PubMed  CAS  Google Scholar 

  • Streit WR, Daniel R, Jaeger KE (2004) Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr Opin Biotechnol 15:285–290

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Une T, Fujimoto T, Sato K, Osada Y (1988) In vitro activity of DR-3355, an optically active ofloxacin. Antimicrob Agents Chemother 32:1336–1340

    PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69:6235–6242

    Article  PubMed  CAS  Google Scholar 

  • Woo JH, Hwang YO, Kang SG, Lee HS, Cho JC, Kim SJ (2007) Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 76:365–375

    Article  PubMed  CAS  Google Scholar 

  • Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KORDI in-house program (PE98230) and the Marine & Extreme Genome Research Center Program, Ministry of Land, Transport and Maritime Affairs, Republic of Korea. We are very grateful to the Norwegian community at Ny-Ålesund and Dr. Hong Kum Lee at Korea Polar Research Institute for the support during the Arctic field study on July 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jin Kim.

Additional information

Jeong Ho Jeon and Jun-Tae Kim equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, J.H., Kim, JT., Kang, S.G. et al. Characterization and its Potential Application of Two Esterases Derived from the Arctic Sediment Metagenome. Mar Biotechnol 11, 307–316 (2009). https://doi.org/10.1007/s10126-008-9145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9145-2

Keywords

Navigation