Skip to main content

Advertisement

Log in

Screening Enantioselective Epoxide Hydrolase Activities from Marine Microorganisms: Detection of Activities in Erythrobacter spp.

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

To develop an enantioselective epoxide hydrolase (EHase) from marine microorganisms, marine samples were collected from a variety of marine environments. Strains isolated by the capability of living on styrene oxide (SO) were screened for retaining enantioselective EHase activities toward SO by combining spectrophotometric, GC, and HPLC analysis. Consequently, one strain, JCS358, was selected, and the sequence analysis of 16S rRNA gene showed that the strain belonged to Erythrobacter cluster. Twelve additional Erythrobacter strains from this study or acquired from culture collections were thereby tested for displaying EHase activities, and most of tested strains showed enantioselective hydrolysis toward SO and glycidyl phenyl ether. Kinetic resolution of racemic SO using whole cell of Erythrobacter sp. JCS358 was performed. Enantiopure (S)-SO could be obtained with an enantiomeric excess (ee) higher than 99% after 15 h incubation. The determination of 1-phenyl-1,2-ethanediol configuration derived from racemic SO confirmed the enantioselective hydrolyzing activity of Erythrobacter sp. JCS358.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anzai Y, Kim H, Park J-Y, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    PubMed  CAS  Google Scholar 

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491–525

    Article  PubMed  CAS  Google Scholar 

  • Archelas A, Furstoss R (2001) Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol 5:112–119

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar T, Manoj KM, Baratti JC (2001) A spectrophotometric method to assay epoxide hydrolase activity. J Biochem Biophys Methods 50:1–13

    Article  PubMed  CAS  Google Scholar 

  • Chang D, Wang Z, Heringa MF, Wirthner R, Witholt B, Li Z (2003) Highly enantioselective hydrolysis of alicyclic meso-epoxides with a bacterial epoxide hydrolase from Sphingomonas sp. HXN-200: simple syntheses of alicyclic vicinal trans-diols. Chem Commun (Camb) 21:960–961

    Article  CAS  Google Scholar 

  • Denner EBM, Vybiral D, Kobĺžek M, Kämpfer P, Busse H-J, Velimirov B (2002) Erythrobacter citreus sp. nov., a yellow pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western mediterranean sea. Int J Syst Evol Microbiol 52:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP: phylogeny inference package. Version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle

  • Ferrara-Guerrero MJ, Marty DG, Bianchi A (1993) Isolation and enumeration of anaerobic and microaerophilic bacteria in aquatic habitats. In: Kemp P (ed) Handbook of methods in microbial ecology. Lewis Publishers, Florida, pp 9–19

    Google Scholar 

  • Grogan G, Roberts SM, Willetts AJ (1996) Novel aliphatic epoxide hydrolase activities from dematiaceous fungi. FEMS Microbiol Lett 141:239–243

    Article  PubMed  CAS  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273

    Article  PubMed  CAS  Google Scholar 

  • Kim JT, Kang SG, Woo J-H, Lee J-H, Jeong BC, Kim S-J (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Bioterchnol 74:820–828

    Article  CAS  Google Scholar 

  • Nohynek LJ, Nurmiaho-Lassila EL, Suhonen EL, Busse HJ, Mohammadi M, Hantula J, Rainey F, Salkinoja-Salonen MS (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer CH, ZoBell CE (1952) The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11:10–18

    Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2005) Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. Appl Environ Microbiol 71:3995–4003

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Wittich RM, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750

    PubMed  CAS  Google Scholar 

  • Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217

    Google Scholar 

  • Shuttleworth KL, Sung J, Kim E, Cerniglia CE (2000) Physiological and genetic comparison of two aromatic hydrocarbon-degrading Sphingomonas strains. Mol Cells 10:199–205

    PubMed  CAS  Google Scholar 

  • Straathof AJJ, Jongejan JA (1997) The enantiomeric ratio: origin, determination and prediction. Enzyme Microb Tech 21:559–571

    Article  CAS  Google Scholar 

  • Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN (1997) Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277:936–938

    Article  PubMed  CAS  Google Scholar 

  • van Loo B, Spelberg JHL, Kingma J, Sonke T, Wubbolts MG, Janssen DB (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol 11:981–990

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Catal B-Enzym 6:199–214

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Woo J-H, Hwang Y-O, Kang SG, Lee HS Cho J-C, Kim S-J (2007) Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol (in press)

  • Yoon J-H, Kim H, Kim I-G, Kang KH, Park Y-H (2003) Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad’on N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Hyper-Dolphin operation team and the R/V Natsushima team at Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for sample collection in Kagoshima Bay. This work was supported by KORDI in-house program (PE97803) and the Marine & Extreme Genome Research Center Program, Ministry of Marine Affairs & Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jin Kim.

Additional information

Three different assays were used to determine the enantioselective hydrolysis of epoxides

1) spectrophotometric diol assay – nonstereoselective assay

2) GC analysis – measuring remaining epoxides with enantioselective resolution

3) HPLC diol analysis – measuring produced diols with enantioselective resolution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, YO., Kang, S.G., Woo, JH. et al. Screening Enantioselective Epoxide Hydrolase Activities from Marine Microorganisms: Detection of Activities in Erythrobacter spp.. Mar Biotechnol 10, 366–373 (2008). https://doi.org/10.1007/s10126-007-9070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9070-9

Keywords

Navigation