Skip to main content
Log in

Efficient Transfection Strategy for the Spatiotemporal Control of Gene Expression in Zebrafish

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Functional analyses of gene function by knockdown and expression approaches strongly enhance the genetic study of development. In vivo application of the introduction of inhibitors of gene expression, mRNA, and expression constructs in the target region make it possible to perform region- and stage-specific regulation of gene function in a simple manner. As a basic tool for the conditional regulation of gene expression in target tissue, we present methods for the efficient introduction of antisense morpholino oligonucleotide (MO), mRNA, and expression plasmid constructs into early and later stage zebrafish embryo and larva. Lipofection of a neuron-specific expression construct plasmid encoding green fluorescent protein (GFP) into optic vesicle resulted in clear GFP expression in the retinotectal pathway in hatched larva. Co-lipofection of MO and GFP mRNA to the presumptive head region resulted in brain-specific knockdown of the gene in mid-stage embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • H Ando H Okamoto (2003) ArticleTitlePractical procedures for ectopic induction of gene expression in zebrafish embryos using Bhc-diazo-caged mRNA Methods Cell Sci 25 25–31 Occurrence Handle10.1023/B:MICS.0000006846.13226.38

    Article  Google Scholar 

  • H Ando T Furuta RY Tsien H Okamoto (2001) ArticleTitlePhoto-mediated gene activation using caged RNA/DNA in zebrafish embryos Nat Genet 28 317–325 Occurrence Handle10.1038/ng583

    Article  Google Scholar 

  • H Ando T Furuta H Okamoto (2004) ArticleTitlePhoto-mediated gene activation by using caged mRNA in zebrafish embryos Methods Cell Biol 77 159–171

    Google Scholar 

  • H Ando M Kobayashi T Tsubokawa K Uyemura T Furuta H Okamoto (2005) ArticleTitle Lhx2 mediates the activity of Six3 in zebrafish forebrain growth Dev Biol 287 456–468 Occurrence Handle10.1016/j.ydbio.2005.09.023

    Article  Google Scholar 

  • I Bachy P Vernier S Retaux (2001) ArticleTitleThe LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain J Neurosci 21 7620–7629

    Google Scholar 

  • D Balciunas AE Davidson S Sivasubbu SB Hermanson Z Welle SC Ekker (2004) ArticleTitleEnhancer trapping in zebrafish using the Sleeping Beauty transposon BMC Genomics 5 62 Occurrence Handle10.1186/1471-2164-5-62

    Article  Google Scholar 

  • KJ Clark AM Geurts JB Bell PB Hackett (2004) ArticleTitleTransposon vectors for gene-trap insertional mutagenesis in vertebrates Genesis 39 225–233 Occurrence Handle10.1002/gene.20049

    Article  Google Scholar 

  • B Cohen ME MuGuffin C Pfeifle D Segal SM Cohen (1992) ArticleTitleapterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins Gene Dev 6 715–729

    Google Scholar 

  • Z Cui Y Yang CD Kaufman D Agalliu PB Hackett (2003) ArticleTitleRecA-mediated, targeted mutagenesis in zebrafish Mar Biotechnol 5 174–184 Occurrence Handle10.1007/s10126-002-0059-0

    Article  Google Scholar 

  • R DasGupta A Kaykas RT Moon N Perrimon (2005) ArticleTitleFunctional genomics analysis of the Wnt-Wingless signaling pathway Science 308 826–833 Occurrence Handle10.1126/science.1109374

    Article  Google Scholar 

  • CR Dass (2004) ArticleTitleLipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection J Mol Med 82 579–591 Occurrence Handle10.1007/s00109-004-0558-8

    Article  Google Scholar 

  • OA Elsalini KB Rohr (2003) ArticleTitlePhenylthiourea disrupts thyroid function in developing zebrafish Dev Genes Evol 212 593–598

    Google Scholar 

  • MC Halloran M Sato-Maeda JT Warren F Su Z Lele PH Krone JY Kuwada W Shoji (2000) ArticleTitleLaser-induced gene expression in specific cells of transgenic zebrafish Development 127 1953–1960

    Google Scholar 

  • G Hauptmann T Gerster (2000) ArticleTitleRegulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain Mech Dev 91 105–118 Occurrence Handle10.1016/S0925-4773(99)00277-4

    Article  Google Scholar 

  • CE Holt N Garlick E Cornel (1990) ArticleTitleLipofection of cDNAs in the embryonic vertebrate central nervous system Neuron 4 203–214 Occurrence Handle10.1016/0896-6273(90)90095-W

    Article  Google Scholar 

  • DA Kane M Hammerschmidt MC Mullins H-M Maischein M Brand FJM Eeden Particlevan M Furutani-Seiki M Granato P Haffter C-P Heisenberg Y-J Jiang RN Kelsh J Odenthal RM Warga C Nusslein-Volhard (1996) ArticleTitleThe zebrafish epiboly mutants Development 123 47–55

    Google Scholar 

  • J Karlsson J Hofsten Particlevon PE Olsson (2001) ArticleTitleGenerating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development Mar Biotechnol 3 522–527 Occurrence Handle10.1007/s1012601-0053-4

    Article  Google Scholar 

  • K Kawakami (2004) ArticleTitleTransgenesis and gene trap methods in zebrafish by using the Tol2 transposable element Methods Cell Biol 77 201–222 Occurrence Handle10.1016/S0091-679X(04)77011-9

    Article  Google Scholar 

  • RW Koster SE Fraser (2001) ArticleTitleTracing transgene expression in living zebrafish embryos Dev Biol 233 329–346 Occurrence Handle10.1006/dbio.2001.0242

    Article  Google Scholar 

  • J Malicki SCF Neuhauss AF Schier L Solnica-Krezel DL Stemple DYR Stainier S Abdelilah F Zwartkruis Z Rangini W Driever (1996) ArticleTitleMutations affecting development of the zebrafish retina Development 123 263–273

    Google Scholar 

  • S Ohnuma F Mann S Boy M Perron WA Harris (2002) ArticleTitleLipofection strategy for the study of Xenopus retinal development Methods 28 411–419 Occurrence Handle10.1016/S1046-2023(02)00260-8

    Article  Google Scholar 

  • H-C Park C-H Kim Y-K Bae S-Y Yeo S-H Kim S-K Hong J Shin K-W Yoo M Hibi T Hirano N Miki AB Chitnis T-L Huh (2000) ArticleTitleAnalysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons Dev Biol 227 279–293 Occurrence Handle10.1006/dbio.2000.9898

    Article  Google Scholar 

  • L Puelles JLR Rubenstein (2003) ArticleTitleForebrain gene expression domains and the evolving prosomeric model Trends Neurosci 26 469–476 Occurrence Handle10.1016/S0166-2236(03)00234-0

    Article  Google Scholar 

  • S Retaux M Rogard I Bach V Faili MJ Besson (1999) ArticleTitle Lhx9: a novel LIM-homeodomain gene expressed in the developing forebrain J Neurosci 19 783–793

    Google Scholar 

  • MN Roy CG Sagerstrom (2004) ArticleTitleAn early Fgf signal required for gene expression in the zebrafish hindbrain primordium Brain Res Dev Brain Res 148 27–42 Occurrence Handle10.1016/j.devbrainres.2003.10.005

    Article  Google Scholar 

  • RA Rupp L Snider H Weintraub (1994) ArticleTitle Xenopus embryos regulate the nuclear localization of XmyoD Genes Dev 11 1311–1323

    Google Scholar 

  • S Scholpp C Lohs M Brand (2003) ArticleTitleEngrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon Development 130 4881–4893 Occurrence Handle10.1242/dev.00683

    Article  Google Scholar 

  • CA Stuermer (1988) ArticleTitleRetinotopic organization of the developing retinotectal projection in the zebrafish embryo J Neurosci 8 4513–4530

    Google Scholar 

  • PM Sudha S Low J Kwang Z Gong (2001) ArticleTitleMultiple tissue transformation in adult zebrafish by gene gun bombardment and muscular injection of naked DNA Mar Biotechnol 3 119–125 Occurrence Handle10.1007/s101260000056

    Article  Google Scholar 

  • DL Turner H Weintraub (1994) ArticleTitleExpression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate Genes Dev 8 1434–1447

    Google Scholar 

  • AR Vancha S Govindaraju KVL Parsa M Jasti M Gonzalez-Garcia RP Ballestero (2004) ArticleTitleUse of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer BMC Biotech 4 23 Occurrence Handle10.1186/1472-6750-4-23

    Article  Google Scholar 

  • SA Wadman KJ Clark PB Hackett (2005) ArticleTitleFishing for answers with transposons Mar Biotechnol 7 135–141 Occurrence Handle10.1007/s10126-004-0068-2

    Article  Google Scholar 

  • M Westerfield (2000) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) University of Oregon Press Eugene, O.R.

    Google Scholar 

  • EL Wiellette H Sive (2004) ArticleTitleEarly requirement for fgf8 function during hindbrain pattern formation in zebrafish Dev Dyn 229 393–399 Occurrence Handle10.1002/dvdy.10464

    Article  Google Scholar 

  • MF Wullimann L Puelles (1999) ArticleTitlePostembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains Anat Embryol 329 329–348 Occurrence Handle10.1007/s004290050232

    Article  Google Scholar 

  • R Yazawa I Hirono T Ohira T Aoki (2005a) ArticleTitleInduction of Japanese flounder tnf promoter activity by lipopolysaccharide in zebrafish embryo Mar Biotechnol 7 231–235 Occurrence Handle10.1007/s10126-004-0403-7

    Article  Google Scholar 

  • R Yazawa I Hirono T Aoki (2005b) ArticleTitleCharacterization of promoter activities of four different Japanese flounder promoters in transgenic zebrafish Mar Biotechnol 7 625–633 Occurrence Handle10.1007/s10126-005-0011-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. M. Kobayashi and A. Thomson for critical reading of the manuscript. This research was supported by grants from RIKEN, BSI, CREST (JST) and the Special Coordination Fund to H. Okamoto and grants-in-aids to H. Okamoto from the Ministry of Education, Science, Technology, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Ando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, H., Okamoto, H. Efficient Transfection Strategy for the Spatiotemporal Control of Gene Expression in Zebrafish. Mar Biotechnol 8, 295–303 (2006). https://doi.org/10.1007/s10126-005-5138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-005-5138-6

Keywords

Navigation