Skip to main content

Morpholino Studies in Xenopus Brain Development

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Antisense morpholino oligonucleotides (MOs) have become a valuable method to knockdown protein levels, to block with mRNA splicing and to interfere with miRNA function. MOs are widely used to alter gene expression in development of Xenopus and Zebrafish, where they are typically injected into the fertilized egg or blastomeres. Here we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells of the brain with current passing between 2 platinum plate electrodes, positioned on either side of the target brain area. The method is relatively straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell type-specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staton AA, Giraldez AJ (2011) Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc 6(12):2035–2049. https://doi.org/10.1038/nprot.2011.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30(3):154–156. Epub 2001/07/31

    Article  CAS  PubMed  Google Scholar 

  3. Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358(2):521–527. https://doi.org/10.1016/j.bbrc.2007.04.172. Epub 2007/05/12

    Article  CAS  PubMed  Google Scholar 

  4. Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318(5848):271–274. https://doi.org/10.1126/science.1147535

    Article  CAS  PubMed  Google Scholar 

  5. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203. https://doi.org/10.1371/journal.pbio.0050203. Epub 2007/08/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13(20):2409–2420. https://doi.org/10.1093/hmg/ddh272. Epub 2004/08/31

    Article  CAS  PubMed  Google Scholar 

  7. Kimmel CB, Law RD (1985) Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 108(1):78–85

    Article  CAS  PubMed  Google Scholar 

  8. Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–134. https://doi.org/10.1006/dbio.2000.9720. [pii] S0012-1606(00)99720-3. Epub 2000/07/08

    Article  CAS  PubMed  Google Scholar 

  9. Tandon P, Showell C, Christine K, Conlon FL (2012) Morpholino injection in Xenopus. Methods Mol Biol 843:29–46. https://doi.org/10.1007/978-1-61779-523-7_4. Epub 2012/01/10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA et al (2007) p53 activation by knockdown technologies. PLoS Genet 3(5):e78. https://doi.org/10.1371/journal.pgen.0030078. Epub 2007/05/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardy S, Legagneux V, Audic Y, Paillard L (2010) Reverse genetics in eukaryotes. Biol Cell 102(10):561–580. https://doi.org/10.1042/BC20100038. Epub 2010/09/04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561(7723):416–419. https://doi.org/10.1038/s41586-018-0500-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Summerton JE (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects adn sequence specificity. Curr Top Med Chem 7:651–660

    Article  CAS  PubMed  Google Scholar 

  14. Chen CM, Chiu SL, Shen W, Cline HT (2009) Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo. Front Neurosci 3:63. https://doi.org/10.3389/neuro.17.001.2009. Epub 2009/01/01

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25(11):1121–1131. https://doi.org/10.1101/gad.2038811. Epub 2011/05/18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135(10):1735–1743. https://doi.org/10.1242/dev.001115. Epub 2008/04/12

    Article  CAS  PubMed  Google Scholar 

  17. Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS et al (2017) Guidelines for morpholino use in zebrafish. PLoS Genet 13(10):e1007000. https://doi.org/10.1371/journal.pgen.1007000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohnuma S-i, Mann F, Boy S, Perron M, Harris WA (2002) Lipofection strategy for the study of Xenopus retinal development. Methods 28:411–419

    Article  CAS  PubMed  Google Scholar 

  19. Ando H, Okamoto H (2006) Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. Mar Biotechnol 8(3):295–303. https://doi.org/10.1007/s10126-005-5138-6. Epub 2006/04/15

    Article  CAS  Google Scholar 

  20. Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K (2002) Improved mRNA electroporation method for Xenopus neurula embryos. Genesis 33(2):81–85. https://doi.org/10.1002/gene.10094. Epub 2002/07/12

    Article  CAS  PubMed  Google Scholar 

  21. Eide FF, Eisenberg SR, Sanders TA (2000) Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Lett 486:29–32

    Article  CAS  PubMed  Google Scholar 

  22. Bestman JE, Ewald RC, Chiu SL, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1(3):1267–1272. https://doi.org/10.1038/nprot.2006.186

    Article  CAS  PubMed  Google Scholar 

  23. Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M et al (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7(1):107. https://doi.org/10.1186/1471-213X-7-107. Epub 2007/09/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo—from single cells to the entire brain. Differentiation 70(4–5):148–154. https://doi.org/10.1046/j.1432-0436.2002.700404.x. Epub 2002/07/31

    Article  CAS  PubMed  Google Scholar 

  25. Haas K, Sin W-C, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29(3):583–591

    Article  CAS  PubMed  Google Scholar 

  26. Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45(4):505–512. https://doi.org/10.1016/j.neuron.2004.12.051

    Article  CAS  PubMed  Google Scholar 

  27. Ruthazer ES, Li J, Cline HT (2006) Stabilization of axon branch dynamics by synaptic maturation. J Neurosci 26(13):3594–3603. https://doi.org/10.1523/JNEUROSCI.0069-06.2006. Epub 2006/03/31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mende M, Christophorou NA, Streit A (2008) Specific and effective gene knock-down in early chick embryos using morpholinos but not pRFPRNAi vectors. Mech Dev 125(11–12):947–962. https://doi.org/10.1016/j.mod.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  29. Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT (2015) An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. Dev Biol 408(2):269–291. https://doi.org/10.1016/j.ydbio.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Osterele A. Pipette cookbook 2018 P-97 & P-1000 micropipette pullers [pdf]. Sutter instruments; 2018 [cited 2018 14 October]. Rev. F. https://www.sutter.com/PDFs/pipette_cookbook.pdf

  31. Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233(2):329–346. https://doi.org/10.1006/dbio.2001.0242. [pii] S0012-1606(01)90242-8. Epub 2001/05/05

    Article  CAS  PubMed  Google Scholar 

  32. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus Laevis (Daudin): a systematical & chronological survey of the development from the fertilized egg till the end of metamorphosis, 1st edn. Garland Science, New York

    Google Scholar 

  33. Bedell VM, Westcot SE, Ekker SC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10(4):181–188. https://doi.org/10.1093/bfgp/elr021. Epub 2011/07/13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kos R, Tucker RP, Hall R, Duong TD, Erickson CA (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226(3):470–477. https://doi.org/10.1002/dvdy.10254. Epub 2003/03/06

    Article  CAS  PubMed  Google Scholar 

  35. Faulkner RL, Wishard TJ, Thompson CK, Liu HH, Cline HT (2015) FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles. eNeuro 2(1):e0055. https://doi.org/10.1523/ENEURO.0055-14.2014

    Article  PubMed  Google Scholar 

  36. Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT (2008) Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci 28(4):850–861. https://doi.org/10.1523/JNEUROSCI.5078-07.2008. Epub 2008/01/25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bestman JE, Lee-Osbourne J, Cline HT (2012) In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. J Comp Neurol 520(2):401–433. https://doi.org/10.1002/cne.22795. Epub 2011/11/25

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256. https://doi.org/10.1016/s0091-679x(08)00212-4

    Article  CAS  PubMed  Google Scholar 

  39. Bestman JE, Cline HT (2008) The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proc Natl Acad Sci U S A 105(51):20494–20499. https://doi.org/10.1073/pnas.0806296105. Epub 2008/12/17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiu S-L, Chen C-M, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719. https://doi.org/10.1016/j.neuron.2008.04.014. Epub 2008/06/14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen W, McKeown CR, Demas JA, Cline HT (2011) Inhibition to excitation ratio regulates visual system responses and behavior in vivo. J Neurophysiol 106(5):2285–2302. https://doi.org/10.1152/jn.00641.2011. [pii] jn.00641.2011. Epub 2011/07/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma P, Cline HT (2010) Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1. Neuron 68(3):442–455. https://doi.org/10.1016/j.neuron.2010.09.028. Epub 2010/11/03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz N, Schohl A, Ruthazer ES (2011) Activity-dependent transcription of BDNF enhances visual acuity during development. Neuron 70(3):455–467. https://doi.org/10.1016/j.neuron.2011.02.055. Epub 2011/05/11. [pii] S0896-6273(11)00298-4

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Ishibashi S, Amaya E (2012) Reverse genetic studies using antisense morpholino oligonucleotides. Methods Mol Biol 917:143–154. https://doi.org/10.1007/978-1-61779-992-1_8. Epub 2012/09/08

    Article  CAS  PubMed  Google Scholar 

  45. Rana AA, Collart C, Gilchrist MJ, Smith JC (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2(11):1751–1772. https://doi.org/10.1371/journal.pgen.0020193. ARTN e193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hollis T. Cline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bestman, J.E., Cline, H.T. (2020). Morpholino Studies in Xenopus Brain Development. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics