Skip to main content

Advertisement

Log in

Metabolically Engineered Rhodobacter sphaeroides RV strains for Improved Biohydrogen Photoproduction Combined with Disposal of Food Wastes

  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Three differently metabolically engineered strains, 2 single PHA- and Hup- mutants and one double PHA-/Hup- mutant, of the purple nonsulfur photosynthetic bacterium Rhodobacter sphaeroides RV, were constructed to improve a light-driven biohydrogen production process combined with the disposal of solid food wastes. These phenotypes were designed to abolish, singly or in combination, the competition of H2 photoproduction with polyhydroxyalkanoate (PHA) accumulation by inactivating PHA synthase activity, and with H2 recycling by abolishing the uptake hydrogenase enzyme. The performance of these mutants was compared with that of the wild-type strain in laboratory tests carried out in continuously fed photobioreactors using as substrates both synthetic media containing lactic acid and media from the acidogenic fermentation of actual fruit and vegetable wastes, containing mainly lactic acid, smaller amounts of acetic acia, and traces of higher volatile acids. With the lactic acid-based synthetic medium, the single Hup- and the double PHA-/Hup- mutants, but not the single PHA- mutant, exhibited increased rates of H2 photoproduction, about one third higher than that of the wild-type strain. With the food-waste-derived growth medium, only the single Hup- mutant showed higher rates of H2 production, but all 3 mutants sustained a longer-term H2 photoproduction phase than the wild-type strain, with the double mutant exhibiting overall the largest amount of H2 evolved. This work demonstrates the feasibility of single and multiple gene engineering of microorganisms to redirect their metabolism for improving H2 photoproduction using actual waste-derived substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • J.R. Benemann (1977) Hydrogen and methane production through microbial photosynthesis R. Buvet (Eds) et al. Living Systems as Energy Converters Elsevier/North Holland Biomedical Press Amsterdam 285–298

    Google Scholar 

  • J.R. Benemann (1998) The technology of biohydrogen O.R. Zaborsky (Eds) BioHydrogen Plenum Press New York, N.Y. 19–30

    Google Scholar 

  • M.M. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 72 248–254 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    CAS  PubMed  Google Scholar 

  • H. Brandl E.J. Knee SuffixJr. R.C. Fuller R.A. Gross R.W. Lenz (1989) ArticleTitleAbility of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates) potential sources for biodegradable polyesters Int J Biol Macromol 11 49–55 Occurrence Handle1:CAS:528:DyaL1MXhslWktrk%3D Occurrence Handle2518731

    CAS  PubMed  Google Scholar 

  • H. Brandl R.A. Gross R.W. Lenz R. Lloyd R.C. Fuller (1991) ArticleTitleThe accumulation of poly (3-hydroxyalkanoates) in R. sphaeroides Arch Microbiol 155 337–340 Occurrence Handle1:CAS:528:DyaK3MXit1GnsLY%3D

    CAS  Google Scholar 

  • A. Colbeau P. Richaud B. Toussaint F.J. Caballero C. Elster C. Delphin R.L. Smith J. Chabert P.M. Vignais (1993) ArticleTitleOrganization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus: sequence analysis and identification of two hyp regulatory mutants Mol Microbiol 8 15–29 Occurrence Handle1:CAS:528:DyaK3sXksVanur0%3D Occurrence Handle8497190

    CAS  PubMed  Google Scholar 

  • S. Colonna-Romano W. Arnold A. Schluter P. Boistard A. Pulher U.B. Priefer (1990) ArticleTitleAn Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK Mol Gen Genet 223 138–147 Occurrence Handle1:CAS:528:DyaK3MXhvVahsw%3D%3D Occurrence Handle2175385

    CAS  PubMed  Google Scholar 

  • D. Das T.N. Veziroglu (2001) ArticleTitleHydrogen production by biological processes: a survey of literature Int J Hydrogen Energy 26 13–28 Occurrence Handle1:CAS:528:DC%2BD3cXotlCgtbs%3D

    CAS  Google Scholar 

  • D. Shazer ParticleDe D.E. Woods (1996) ArticleTitleBroad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene Biotechniques 20 762–764 Occurrence Handle8723912

    PubMed  Google Scholar 

  • E. Fascetti O. Todini (1995) ArticleTitle Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat Appl Microbiol Biotechnol 44 300–305 Occurrence Handle1:CAS:528:DyaK28XitVersLw%3D

    CAS  Google Scholar 

  • E. Fascetti E. D’Addario O. Todini A. Robertiello (1998) ArticleTitlePhotosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes Int J Hydrogen Energy 23 753–760 Occurrence Handle1:CAS:528:DyaK1cXkvV2isbg%3D

    CAS  Google Scholar 

  • M. Gomelsky S. Kaplan (1995) ArticleTitleIsolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase Microbiology 141 1805–1819 Occurrence Handle1:CAS:528:DyaK2MXns1aht7c%3D Occurrence Handle7551045 Occurrence Handle10.1099/13500872-141-8-1805

    Article  CAS  PubMed  Google Scholar 

  • E. Hidalgo J.M. Palacios J. Murillo T. Ruiz-Argueso (1992) ArticleTitleNucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. vicae J Bacteriol 174 4130–4139 Occurrence Handle1:CAS:528:DyaK3sXitVKksbw%3D Occurrence Handle1597428

    CAS  PubMed  Google Scholar 

  • E. Hustede A. Steinbuchel (1993) ArticleTitleCharacterization of the polyhydroxyalkanoate synthase gene locus of Rhodobacter sphaeroides Biotechnol Lett 15 709–714 Occurrence Handle1:CAS:528:DyaK2cXpslCksA%3D%3D

    CAS  Google Scholar 

  • E. Hustede A. Steinbuchel H.G. Schlegel (1993) ArticleTitleRelationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur purple bacteria Appl Microbiol Biotechnol 39 87–93 Occurrence Handle1:CAS:528:DyaK3sXkt1Cgur8%3D

    CAS  Google Scholar 

  • Y. Ikuta T. Akano N. Shioji I. Maeda (1998) Hydrogen production by photosynthetic microorganisms O.R. Zaborsky (Eds) BioHydrogen Plenum Press New York, N.Y. 319–328

    Google Scholar 

  • A. Jahn B. Keuntje M. Dorffler W. Klipp J. Oelze (1994) ArticleTitleOptimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene Appl Microbiol Biotechnol 40 687–690 Occurrence Handle1:CAS:528:DyaK2cXktlSrsLg%3D Occurrence Handle7765318

    CAS  PubMed  Google Scholar 

  • E. Katipov M. Miyake J. Miyake Y. Asada (1998) ArticleTitleAccumulation of poly-?-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates FEMS Microbiol Lett 162 39–45

    Google Scholar 

  • M. Kern W. Klipp J.-H. Klemme (1994) ArticleTitleIncreased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum Appl Environ Microbiol 60 1768–1774 Occurrence Handle1:CAS:528:DyaK2cXkt1ygsLg%3D

    CAS  Google Scholar 

  • I. Maeda K. Idehara N. Okayama Y. Miura K. Yagi T. Mizoguchi (1997) ArticleTitlePoly(3-hydroxybutyrate) as an endogenous substrate for H2 evolution in Rhodovulum sulphidophilum Biotechnol Lett 19 1209–1212 Occurrence Handle1:CAS:528:DyaK1cXltFWisg%3D%3D

    CAS  Google Scholar 

  • X. Mao J. Miyake S. Kawamura (1986) ArticleTitleScreening photosynthetic bacteria for hydrogen production from organic acids J Ferment Technol 64 245–249 Occurrence Handle1:CAS:528:DyaL28XkvVaisb8%3D

    CAS  Google Scholar 

  • J. Miyake X.Y. Mao S. Kawamura (1984) ArticleTitlePhotoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum J Ferment Technol 62 531–535 Occurrence Handle1:CAS:528:DyaL2MXnslajsg%3D%3D

    CAS  Google Scholar 

  • J. Miyake M. Miyake Y. Asada (1999) ArticleTitleBiotechnological hydrogen production: research for efficient light energy conversion J Biotechnol 70 89–101 Occurrence Handle1:CAS:528:DyaK1MXjs1Shs70%3D

    CAS  Google Scholar 

  • J. Miyake T. Matsunaga A. San Pietro (2001) Biohydrogen II Pergamon Press Amsterdam

    Google Scholar 

  • Y. Nagamine T. Kawasugi M. Miyake Y. Asada J. Miyake (1996) ArticleTitleCharacterization of photosynthetic bacterium Rhodobacter sphaeroides RV for hydrogen production J Mar Biotechnol 4 34–37 Occurrence Handle1:CAS:528:DyaK28XkslSnu7w%3D

    CAS  Google Scholar 

  • J. Sambrook D.W. Russell (2001) Molecular Cloning: A Laboratory Manual EditionNumber3 Cold Spring Harbor Laboratory Press Cold Spring Harbor, N.Y

    Google Scholar 

  • K. Sasikala C.V. Ramana P.R. Rao K.L. Kovacs (1993) ArticleTitleAnoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology Adv Appl Microbiol 38 211–295 Occurrence Handle1:CAS:528:DyaK3sXitlOms7w%3D Occurrence Handle10.1016/S0065-2164(08)70217-X

    Article  CAS  Google Scholar 

  • R. Simon U. Priefer A. Puhler (1983) ArticleTitleA broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria Bio/Technol 1 37–45

    Google Scholar 

  • A. Steinbuchel E. Hustede M. Liebergesell U. Pieper A. Timm H. Valentin (1992) ArticleTitleMolecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria FEMS Microbiol Rev 103 217–230

    Google Scholar 

  • P.M. Vignais A. Colbeau J.C. Willison Y. Jouanneau (1985) ArticleTitleHydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria Adv Microbiol Physiol 26 155–234 Occurrence Handle1:CAS:528:DyaL28XhtVGksr8%3D Occurrence Handle10.1016/S0065-2911(08)60397-5

    Article  CAS  Google Scholar 

  • P.M. Vignais B. Billoud J. Meyer (2001) ArticleTitleClassification and phytogeny of hydrogenases FEMS Microbiol Rev 25 455–501 Occurrence Handle1:CAS:528:DC%2BD3MXmt1Kls7Y%3D Occurrence Handle11524134

    CAS  PubMed  Google Scholar 

  • M. Vincenzini A. Marchini A. Ena R. Philippis ParticleDe (1997) ArticleTitleH2 and poly-?-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria Biotechnol Lett 19 759–762 Occurrence Handle1:CAS:528:DyaK2sXlsFajtb0%3D

    CAS  Google Scholar 

  • N.M. Weare J.R. Benemann (1973) ArticleTitleNitrogen fixation in Anabaena cylindrical, II: nitrogenase activity during induction and aging of batch cultures Arch Microbiol 93 101–112 Occurrence Handle1:CAS:528:DyaE2cXnvF2ltA%3D%3D

    CAS  Google Scholar 

  • K. Wilson (1994) Preparation of genomic DNA from bacteria F.M. Ausubel R. Brent R.E. Kingston D.D. Moore J.G. Seidman J.A. Smith K. Struhl (Eds) Current Protocols in Molecular Biology, suppl 27, chap 2 Greene Publishing and Wiley-Interscience New York, N.Y

    Google Scholar 

  • C. Yanisch-Perron J. Viera J. Messing (1985) ArticleTitleImproved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp8 and pUC19 vectors Gene 33 103–119 Occurrence Handle1:CAS:528:DyaL2MXktVWgtL0%3D Occurrence Handle2985470

    CAS  PubMed  Google Scholar 

  • N.A. Zorin T. Lissolo A. Colbeau P.M. Vignais (1996) ArticleTitleIncreased hydrogen photoproduction by Rhodobacter capsulatus strains deficient in uptake hydrogenase J Mar Biotechnol 4 28–33 Occurrence Handle1:CAS:528:DyaK28XkslSnu78%3D

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Benemann for critical discussions and many helpful suggestions during the preparation of this publication. This work was performed under the management of the Research Institute of Innovative Technology for the Earth (RITE) as part of the Research and Development Project on Environmentally Friendly Technology for the Production of Hydrogen supported by New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Maria Pedroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, E., Tosi, C., Scolla, G. et al. Metabolically Engineered Rhodobacter sphaeroides RV strains for Improved Biohydrogen Photoproduction Combined with Disposal of Food Wastes. Mar Biotechnol 6, 552–565 (2004). https://doi.org/10.1007/s10126-004-1007-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-004-1007-y

Keywords

Navigation