Skip to main content
Log in

Population Structure and Variation in Red Snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic Coast of Florida as Determined from Mitochondrial DNA Control Region Sequence

  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The mitochondrial DNA control regions of red snapper (Lutjanus campechanus) from the Gulf of Mexico (n = 140) and Atlantic coast of Florida (n = 35) were sequenced to generate a prestocking genetic baseline for planned stock enhancement. Intrasample haplotype and nucleotide diversities ranged from 0.94 to 1.00 and 1.8% to 2.5%, respectively. All population analyses were consistent with the hypothesis that red snapper constitute a single, panmictic population over the sampled range. A ubiquitous, predominant haplotype, shared by 23% of the specimens, appeared to be evolutionarily recent, in contrast to previous findings based on restriction fragment length polymorphism data. Tajima’s D values were suggestive of a recent bottleneck. Mismatch distributions from Gulf samples were smooth and unimodal, characteristic of recent population expansion. However, the Atlantic sample exhibited a comparatively broader, possibly multimodal distribution, suggestive of a more stable population history. Additional control-region data may clarify potentially disparate demographic histories of Gulf and Atlantic snapper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J.C. Avise J. Arnold R.M. Ball E. Bermingham T. Lamb J.E. Neigel C.A. Reeb N.C. Saunders (1987) ArticleTitleIntraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18 489–522 Occurrence Handle10.1146/annurev.ecolsys.18.1.489

    Article  Google Scholar 

  2. C.W. Birky Jr. P. Fuerst T. Maruyama (1989) ArticleTitleOrganelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121 613–627 Occurrence Handle2714640

    PubMed  Google Scholar 

  3. Bradley, E., and Bryan, C.E. (1975). Life history and fishery of the red snapper (Lutjanus campechanus) in the northwestern Gulf of Mexico: 1970–1974. In: Proc. of the 27th Annual Gulf and Caribbean Fisheries Institute and 17th Annual International Game Fish Research Conference, 77–106.

  4. C.I. Camber (1955) ArticleTitleA survey of the red snapper fishery of the Gulf of Mexico, with special reference to the Campeche Banks. Tech Ser Fla St Bd Conserv 12 1–64

    Google Scholar 

  5. R.W. Chapman S.A. Bortone C.M. Woodley (1996) A molecular approach to stock identification and recruitment patterns in red snapper (Lutjanus campechanus). F. Arreguín-Sánchez J.L. Munro M.C. Balgos D. Pauly (Eds) Biology, Fisheries and Culture of Tropical Groupers and Snappers ICLARM Makati City, Philippines 85–91

    Google Scholar 

  6. Filatov, D. (2001). Processor of Sequences Version 2.9b. University of Edinburgh. Available at http://helios.bto.ed.ac.uk/evolgen/filatov/proseq.html.

  7. R.B. Futch G.E. Bruger (1976) ArticleTitleAge, growth, and reproduction of red snapper in Florida waters. Florida Sea Grant College Program Report 17 165–184

    Google Scholar 

  8. S.R. Gallagher (1994) Commonly used biochemical techniques, Appendix 3. K. Janssen (Eds) Current Protocols in Molecular Biology John Wiley and Sons, Inc. New York, N.Y A.3.10–A.3.11

    Google Scholar 

  9. A.F. Garber (2001) Utilization of a hypervariable region as a molecular marker for red snapper, Lutjanus campechanus, stock enhancement. M.Sc. thesis. University of Southern Mississippi Hattiesburg

    Google Scholar 

  10. N.M. Garber (1999) Application of the mitochondrial DNA control region in population structure studies of Mugil cephalus (striped mullet) in North America. M.Sc. thesis. University of Southern Mississippi Hattiesburg

    Google Scholar 

  11. InstitutionalAuthorNameGMFMC (1998) Regulatory amendment to the Reef Fish Fishery Management Plan for red snapper including total allowable catch, bag limits, minimum size limits, and seasons. Gulf of Mexico Fishery Management Council Tampa, Fla. 1–57

    Google Scholar 

  12. J.R. Gold L.R. Richardson (1994) ArticleTitleMitochondrial DNA variation among ‘red’ fishes from the Gulf of Mexico. Fish Res 20 137–150 Occurrence Handle10.1016/0165-7836(94)90079-5

    Article  Google Scholar 

  13. J.R. Gold L.R. Richardson (1998) ArticleTitleGenetic homogeneity among geographic samples of snappers and groupers: evidence of continuous gene flow? Proc Ann Gulf Carib Fish Inst 50 709–726

    Google Scholar 

  14. J.R. Gold F. Sun L.R. Richardson (1997) ArticleTitlePopulation structure of the red snapper from the Gulf of Mexico as inferred from analysis of mitochondrial DNA. Trans Am Fish Soc 126 386–396 Occurrence Handle1:CAS:528:DyaK2sXlt1Ckuro%3D

    CAS  Google Scholar 

  15. J.R. Gold E. Pak L.R. Richardson (2001) ArticleTitleMicrosatellite variation among red snapper (Lutjanus campechanus) from the Gulf of Mexico. Mar Biotechnol 3 293–304 Occurrence Handle1:CAS:528:DC%2BD3MXkvFCltr8%3D

    CAS  Google Scholar 

  16. C.P. Goodyear (1995) Red snapper in U.S. waters of the Gulf of Mexico. National Marine Fisheries Service, Southeast Fisheries Science Center, Miami Laboratory, MIA-95/96-05 Miami, Fla. 1–171

    Google Scholar 

  17. J. Goudet M. Raymond T. de Meeüs F. Rousset (1996) ArticleTitleTesting differentiation in diploid populations. Genetics 144 1933–1940 Occurrence Handle1:STN:280:ByiC3s3mt1A%3D Occurrence Handle8978076

    CAS  PubMed  Google Scholar 

  18. W.S. Grant B.W. Bowen (1998) ArticleTitleShallow population histories in deep evolutionary lineages of marine fishes: insights from sardine and anchovies and lessons for conservation. J Hered 89 415–426 Occurrence Handle10.1093/jhered/89.5.415

    Article  Google Scholar 

  19. R.C. Harpending (1994) ArticleTitleSignature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66 591–600 Occurrence Handle1:STN:280:ByuA2svps1c%3D Occurrence Handle8088750

    CAS  PubMed  Google Scholar 

  20. E.J. Heist J.R. Gold (2000) ArticleTitleDNA microsatellite loci and genetic structure of red snapper in the Gulf of Mexico. Trans Am Fish Soc 129 469–475 Occurrence Handle1:CAS:528:DC%2BD3cXisVCltL8%3D

    CAS  Google Scholar 

  21. A.G. Johnson (1987) An investigation of the biochemical and morphometric characteristics of red snapper (Lutjanus campechanus) from the southern United States. National Marine Fisheries Service Panama City, Fla. 1–8

    Google Scholar 

  22. S. Kumar K. Tamura I. Jacobsen M. Nei (2001) MEGA2.1: Molecular Evolutionary Genetics Analysis, Version 2.1. Pennsylvania State University, University Park, and Arizona State University Tempe

    Google Scholar 

  23. W. Lee J. Conroy W.H. Howell T.D. Kocher (1995) ArticleTitleStructure and evolution of teleost mitochondrial control regions. J Mol Evol 41 58–66 Occurrence Handle1:CAS:528:DC%2BD3MXms1Orsb4%3D Occurrence Handle11678277

    CAS  PubMed  Google Scholar 

  24. W.H. Li (1977) ArticleTitleDistribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85 331–337

    Google Scholar 

  25. W.P. Maddison D.R. Maddison (1992) MacClade Version 3: an analysis of phylogeny and character evolution. Sinauer Associates, Inc. Sunderland, Mass

    Google Scholar 

  26. A. Meyer (1993) Evolution of mitochondrial DNA in fishes. P.W. Hochachka T.P. Mommsen (Eds) Biochemistry and Molecular Biology of Fishes, Molecular Biology Frontiers, vol. 2, Elsevier Science Publishers Amsterdam, The Netherlands 1–38

    Google Scholar 

  27. F.N. Moseley (1966) ArticleTitleBiology of the red snapper, Lutjanus aya Bloch, of the northwestern Gulf of Mexico. Publ Inst Mar Sci Univ Tex 11 90–101

    Google Scholar 

  28. J.L. Munro J.D. Bell (1997) ArticleTitleEnhancement of marine fisheries resources. Rev Fish Sci 5 185–222

    Google Scholar 

  29. R.S. Nelson C.S. Manooch (1982) ArticleTitleGrowth and mortality of red snappers in the west-central Atlantic Ocean and northern Gulf of Mexico. Trans Am Fish Soc 111 465–475 Occurrence Handle10.1577/1548-8659(1982)111<465:GAMORS>2.0.CO;2

    Article  Google Scholar 

  30. M. Raymond R. Rousset (1995) ArticleTitleAn exact test for population differentiation. Evolution 49 1280–1283

    Google Scholar 

  31. C.A. Reeb L. Arcangeli B.A. Block (2000) ArticleTitleStructure and migration corridors in Pacific populations of the swordfish Xiphius gladius, as inferred through analyses of mitochondrial DNA. Mar Biol 136 1123–1131 Occurrence Handle10.1007/s002270000291

    Article  Google Scholar 

  32. W.R. Rice (1989) ArticleTitleAnalyzing tables of statistical tests. Evolution 43 223–225

    Google Scholar 

  33. A.R. Rogers (1995) ArticleTitleGenetic evidence for a Pleistocene population explosion. Evolution 49 608–615

    Google Scholar 

  34. A.R. Rogers H.C. Harpending (1992) ArticleTitlePopulation growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9 552–569 Occurrence Handle1:STN:280:By2B287jtFI%3D Occurrence Handle1316531

    CAS  PubMed  Google Scholar 

  35. P.E. Rosel B.A. Block (1996) ArticleTitleMitochondrial control region variability and global population structure in the swordfish, Xiphius gladius. Mar Biol 125 11–22 Occurrence Handle1:CAS:528:DyaK28XislKgsrY%3D

    CAS  Google Scholar 

  36. M.J. Schirripa (1998) Status of the red snapper in U.S. waters of the Gulf of Mexico: updated through 1997. National Marine Fisheries Service, Southeast Fisheries Science Center, Miami Laboratory, SFD-97/98-30 Miami, Fla. 1–85

    Google Scholar 

  37. S. Schneider L. Excoffier (1999) ArticleTitleEstimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152 1079–1089

    Google Scholar 

  38. S. Schneider D. Roessli L. Excoffier (1999) ARLEQUIN Version 2.0: a software for population genetic data analysis. Genetics and Biometry Lab, Department of Anthropology, University of Geneva Geneva, Switzerland

    Google Scholar 

  39. S. Seyoum M.D. Tringali T.M. Bert D. McElroy R. Stokes (2000) ArticleTitleAn analysis of genetic population structure in red drum, Sciaenops ocellatus, based on mtDNA control region sequences. Fish Bull 98 127–138 Occurrence Handle1:CAS:528:DyaK1MXntlCrsr8%3D Occurrence Handle10566139

    CAS  PubMed  Google Scholar 

  40. A.M. Shedlock J.D. Parker D.A. Crispin T.W. Pietsch G.C. Burmer (1992) ArticleTitleEvolution of the salmonid mitochondrial control region. Mol Phylogenet Evol 1 179–192 Occurrence Handle1:CAS:528:DyaK3sXkvFWks7o%3D Occurrence Handle1342934

    CAS  PubMed  Google Scholar 

  41. G.F. Shields J.R. Gust (1995) ArticleTitleLack of geographic structure in mitochondrial DNA sequences of Bering Sea walleye pollock, Theragra chalcogramma. Mol Mar Biol Biotechnol 4 69–82 Occurrence Handle1:CAS:528:DyaK2MXmvVKnsbk%3D Occurrence Handle7749468

    CAS  PubMed  Google Scholar 

  42. J. Sullivan K.E. Holsinger C. Simon (1995) ArticleTitleAmong-site rate variation and phylogenetic analysis of 12S rRNA in sigmodontine rodents. Mol Biol Evol 11 261–277

    Google Scholar 

  43. D.L. Swofford (2000) Phylogenetic analysis using Parsimony* (and other methods) Version 4.0b4a. Sinauer Associates Inc. Sunderland, Mass.

    Google Scholar 

  44. S.T. Szedlmayer (1997) ArticleTitleUltrasonic telemetry of red snapper, Lutjanus campechanus, at artificial reef sites in the northeast Gulf of Mexico. Copeia 4 846–850 Occurrence Handle10.1081/ADA-100100248 Occurrence Handle1:STN:280:DC%2BD3M7gtFKqtA%3D%3D Occurrence Handle10976661

    Article  CAS  PubMed  Google Scholar 

  45. F. Tajima (1989) ArticleTitleStatistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 585–595 Occurrence Handle1:CAS:528:DyaK3cXhslentA%3D%3D Occurrence Handle2513255

    CAS  PubMed  Google Scholar 

  46. K. Tamura M. Nei (1993) ArticleTitleEstimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10 512–526 Occurrence Handle1:CAS:528:DyaK3sXks1CksL4%3D Occurrence Handle8336541

    CAS  PubMed  Google Scholar 

  47. A.R. Templeton (1987) Genetics systems and evolutionary rates. K.F.S. Campbell M.F. Day (Eds) Rates of Evolution, Australian Acad. Sci. Canberra 218–234

    Google Scholar 

  48. J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) ArticleTitleThe CLUSTALX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Parasitology Group (Gulf Coast Research Laboratory), Lidka Stuck, Walter Grater, Misti Marr, Jay Peterson, Mote Marine Laboratory, Nikola Garber, and Dominic Tringali for assistance with sample procurement and laboratory research. This research was conducted within the U.S. Gulf of Mexico Marine Stock Enhancement Consortium. Funding was provided by the National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS) award NA76FL0446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber F. Garber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garber, A.F., Tringali, M.D. & Stuck, K.C. Population Structure and Variation in Red Snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic Coast of Florida as Determined from Mitochondrial DNA Control Region Sequence . Mar. Biotechnol. 6, 175–185 (2004). https://doi.org/10.1007/s10126-003-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-003-0023-7

Keywords

Navigation