Skip to main content

Advertisement

Log in

Gastric tubular adenocarcinoma with diffuse neutrophils infiltrating: characteristics and probable treatment strategy

  • Original Article
  • Published:
Gastric Cancer Aims and scope Submit manuscript

Abstract

Background

Gastric adenocarcinoma is a highly heterogeneous malignancy with varying prognoses. In clinicopathological practice, we noticed a special tubular adenocarcinoma with diffuse neutrophils infiltrating (TADNI). However, the proportion and characteristics of TADNI remain unclear. This study aimed to evaluate the features of TADNI and explore probable treatments.

Methods

We divided 289 tubular adenocarcinoma cases into the TADNI and non-TADNI (nTADNI) groups by histological neutrophil quantity and performed immunohistochemistry of treatment-associated markers (CXCR1, CXCR2, PD-L1, CD8, HER2 and VEGFR2). Then we evaluated the clinical and morphological features in these cases. We also compared the value of histological features and peripheral blood neutrophil test. In addition, multiomics bioinformatic analyses were performed using the public datasets.

Results

In our cohort, TADNI accounted for 10.4% of all tubular adenocarcinoma cases. These cases had worse prognoses (especially the neutrophils mainly outside the tubes) than nTADNI cases. The histological identification of TADNI had more prognostic value than peripheral blood neutrophils. CXCR1/CXCR2 expression was significantly high in TADNI group which indicated that CXCR1/CXCR2 inhibitors might be beneficial for TADNI patients. There were no significant differences in the expression of PD-L1, CD8, HER2 and VEGFR2. The analyses of TCGA data confirmed that TADNI cases had poorer prognoses and higher CXCR1/CXCR2 expression. Bioinformatic results also revealed molecular features (more hsa-mir-223 expression, fewer CD8-positive T cells and regulatory T cells, tighter communication between tumor cells’ CXCR1/CXCR2 and neutrophils’ CXCL5/CXCL8) of this type.

Conclusions

TADNI is a special morphological subtype with poorer prognoses and unique molecular characteristics, which might benefit from CXCR1/CXCR2 inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Available. The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Board WCoTE. WHO classification of tumours: digestive system tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2019.

    Google Scholar 

  2. Yang M, Zhao Q, Wang X, Liu T, Yao G, Lou C, Zhang Y. TNFAIP8 overexpression is associated with lymph node metastasis and poor prognosis in intestinal-type gastric adenocarcinoma. Histopathology. 2014;65(4):517–26.

    PubMed  Google Scholar 

  3. Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52(1):55–81.

    CAS  PubMed  Google Scholar 

  4. Sionov RV, Fridlender ZG, Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015;8(3):125–58.

    CAS  PubMed  Google Scholar 

  5. Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in pro- and anti-tumor activity of neutrophils: shifting the balance. Front Immunol. 2020;11:2100.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7.

    CAS  PubMed  Google Scholar 

  7. Abe H, Morikawa T, Saito R, Yamashita H, Seto Y, Fukayama M. In Epstein–Barr virus-associated gastric carcinoma a high density of CD66b-positive tumor-associated neutrophils is associated with intestinal-type histology and low frequency of lymph node metastasis. Virchows Arch. 2016;468(5):539–48.

    CAS  PubMed  Google Scholar 

  8. Choi Y, Kim JW, Nam KH, Han SH, Kim JW, Ahn SH, Park DJ, Lee KW, Lee HS, Kim HH. Systemic inflammation is associated with the density of immune cells in the tumor microenvironment of gastric cancer. Gastric Cancer. 2017;20(4):602–11.

    CAS  PubMed  Google Scholar 

  9. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76(3):359–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, Liu XQ, Sher X, Jung H, Lee M, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24(9):1449–58.

    CAS  PubMed  Google Scholar 

  11. Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485–503.

    CAS  PubMed  Google Scholar 

  12. Nemeth T, Sperandio M, Mocsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020;19(4):253–75.

    CAS  PubMed  Google Scholar 

  13. Wang JP, Hu WM, Wang KS, Yu J, Luo BH, Wu C, Chen ZH, Luo GQ, Liu YW, Liu QL, et al. Expression of C-X-C chemokine receptor types 1/2 in patients with gastric carcinoma: Clinicopathological correlations and significance. Oncol Lett. 2013;5(2):574–82.

    CAS  PubMed  Google Scholar 

  14. Zhao JJ, Pan K, Wang W, Chen JG, Wu YH, Lv L, Li JJ, Chen YB, Wang DD, Pan QZ, et al. The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS ONE. 2012;7(3): e33655.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Liu H, Shen Z, Lin C, Wang X, Qin J, Qin X, Xu J, Sun Y. Tumor-infiltrating neutrophils is prognostic and predictive for postoperative adjuvant chemotherapy benefit in patients with gastric cancer. Ann Surg. 2018;267(2):311–8.

    PubMed  Google Scholar 

  16. Wang J, Bo X, Suo T, Liu H, Ni X, Shen S, Li M, Xu J, Liu H, Wang Y. Tumor-infiltrating neutrophils predict prognosis and adjuvant chemotherapeutic benefit in patients with biliary cancer. Cancer Sci. 2018;109(7):2266–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cancer AJCo. AJCC cancer staging manual. 8th ed. Berlin: Springer Nature; 2017.

    Google Scholar 

  18. Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, Ms MJ, Shah S, Hanks D, Wang J, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 2019;143(3):330–7.

    CAS  PubMed  Google Scholar 

  19. Ko A, Coward VS, Gokgoz N, Dickson BC, Tsoi K, Wunder JS, Andrulis IL. Investigating the potential of isolating and expanding tumour-infiltrating lymphocytes from adult sarcoma. Cancers (Basel). 2022;14(3):548.

  20. Bartley AN, Washington MK, Colasacco C, Ventura CB, Ismaila N, Benson AB 3rd, Carrato A, Gulley ML, Jain D, Kakar S, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017;35(4):446–64.

    CAS  PubMed  Google Scholar 

  21. Chang YP, Huang GK, Chen YC, Huang KT, Chen YM, Lin CY, Huang CC, Lin MC, Wang CC. E-cadherin expression in the tumor microenvironment of advanced epidermal growth factor receptor-mutant lung adenocarcinoma and the association with prognosis. BMC Cancer. 2023;23(1):569.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Okamoto A, Yanada M, Miura H, Inaguma Y, Tokuda M, Morishima S, Kanie T, Yamamoto Y, Mizuta S, Akatsuka Y, et al. Prognostic significance of Epstein–Barr virus DNA detection in pretreatment serum in diffuse large B-cell lymphoma. Cancer Sci. 2015;106(11):1576–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hellmann MD, Chaft JE, William WN Jr, Rusch V, Pisters KM, Kalhor N, Pataer A, Travis WD, Swisher SG, Kris MG, et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 2014;15(1):e42-50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang R, Song S, Qin J, Yoshimura K, Peng F, Chu Y, Li Y, Fan Y, Jin J, Dang M, et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell. 2023;41(8):1407-1426 e1409.

    CAS  PubMed  Google Scholar 

  26. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587 e3529.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Alonso L, Handfield LF, Roberts K, Nikolakopoulou K, Fernando RC, Gardner L, Woodhams B, Arutyunyan A, Polanski K, Hoo R, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet. 2021;53(12):1698–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Clausen F, Behrens HM, Kruger S, Rocken C. Sexual dimorphism in gastric cancer: tumor-associated neutrophils predict patient outcome only for women. J Cancer Res Clin Oncol. 2020;146(1):53–66.

    CAS  PubMed  Google Scholar 

  30. Kienle K, Lammermann T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol Rev. 2016;273(1):76–93.

    CAS  PubMed  Google Scholar 

  31. Cong X, Zhang Y, Zhu Z, Li S, Yin X, Zhai Z, Zhang Y, Xue Y. CD66b(+) neutrophils and alpha-SMA(+) fibroblasts predict clinical outcomes and benefits from postoperative chemotherapy in gastric adenocarcinoma. Cancer Med. 2020;9(8):2761–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S, Bhutkar A, Wittrup KD, Spranger S. Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity. 2022;55(2):308-323 e309.

    CAS  PubMed  Google Scholar 

  33. Ohms M, Moller S, Laskay T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Front Immunol. 2020;11:532.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim HW, Kim JH, Lim BJ, Kim H, Kim H, Park JJ, Youn YH, Park H, Noh SH, Kim JW, et al. Sex disparity in gastric cancer: female sex is a poor prognostic factor for advanced gastric cancer. Ann Surg Oncol. 2016;23(13):4344–51.

    PubMed  Google Scholar 

  35. Yamanaka T, Matsumoto S, Teramukai S, Ishiwata R, Nagai Y, Fukushima M. The baseline ratio of neutrophils to lymphocytes is associated with patient prognosis in advanced gastric cancer. Oncology. 2007;73(3–4):215–20.

    PubMed  Google Scholar 

  36. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD. Neutrophils: new insights and open questions. Sci Immunol. 2018;3(30):eaat4579.

  37. Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, et al. A network of sputum microRNAs is associated with neutrophilic airway inflammation in asthma. Am J Respir Crit Care Med. 2020;202(1):51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng L, Wang J, Jiang H, Dong H. A novel necroptosis-related miRNA signature for predicting the prognosis of breast cancer metastasis. Dis Mark. 2022;2022:3391878.

    Google Scholar 

  39. Huang M, Zhang T, Yao ZY, Xing C, Wu Q, Liu YW, Xing XL. MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma. BMC Med Genomics. 2021;14(1):72.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aalami AH, Pouresmaeil V, Amirabadi A, Mojahed FH, Rad MQ, Sahebkar A. Evaluation of the diagnostic properties of serum hsa-miR-223-5p in the detection of gastric cancer: a case–control study. Anticancer Agents Med Chem. 2020;20(7):800–8.

    CAS  PubMed  Google Scholar 

  41. Li J, Guo Y, Liang X, Sun M, Wang G, De W, Wu W. MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4. J Cancer Res Clin Oncol. 2012;138(5):763–74.

    CAS  PubMed  Google Scholar 

  42. Nicolas-Avila JA, Adrover JM, Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity. 2017;46(1):15–28.

    CAS  PubMed  Google Scholar 

  43. Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol. 2013;23(3):149–58.

    CAS  PubMed  Google Scholar 

  44. Zhang W, Gu J, Chen J, Zhang P, Ji R, Qian H, Xu W, Zhang X. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol Rep. 2017;38(5):2959–66.

    CAS  PubMed  Google Scholar 

  45. Zhang J, Ji C, Li W, Mao Z, Shi Y, Shi H, Ji R, Qian H, Xu W, Zhang X. Tumor-educated neutrophils activate mesenchymal stem cells to promote gastric cancer growth and metastasis. Front Cell Dev Biol. 2020;8:788.

    PubMed  PubMed Central  Google Scholar 

  46. Fu H, Ma Y, Yang M, Zhang C, Huang H, Xia Y, Lu L, Jin W, Cui D. Persisting and increasing neutrophil infiltration associates with gastric carcinogenesis and E-cadherin downregulation. Sci Rep. 2016;6:29762.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Teijeira A, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856-871 e858.

    CAS  PubMed  Google Scholar 

  48. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Kuttner V, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science (New York, NY). 2018;361(6409):eaao4227.

  49. Verbeke H, Geboes K, Van Damme J, Struyf S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta. 2012;1825(1):117–29.

    CAS  PubMed  Google Scholar 

  50. Teijeira A, Garasa S, Ochoa MC, Villalba M, Olivera I, Cirella A, Eguren-Santamaria I, Berraondo P, Schalper KA, de Andrea CE, et al. IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy. Clin Cancer Res. 2021;27(9):2383–93.

    CAS  PubMed  Google Scholar 

  51. Simoncello F, Piperno GM, Caronni N, Amadio R, Cappelletto A, Canarutto G, Piazza S, Bicciato S, Benvenuti F. CXCL5-mediated accumulation of mature neutrophils in lung cancer tissues impairs the differentiation program of anticancer CD8 T cells and limits the efficacy of checkpoint inhibitors. Oncoimmunology. 2022;11(1):2059876.

    PubMed  PubMed Central  Google Scholar 

  52. Qian Y, Zhai E, Chen S, Liu Y, Ma Y, Chen J, Liu J, Qin C, Cao Q, Chen J, et al. Single-cell RNA-seq dissecting heterogeneity of tumor cells and comprehensive dynamics in tumor microenvironment during lymph nodes metastasis in gastric cancer. Int J Cancer. 2022;151(8):1367–81.

    CAS  PubMed  Google Scholar 

  53. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141–7.

    CAS  PubMed  Google Scholar 

  54. Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12(3):670–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun K, Xu R, Ma F, Yang N, Li Y, Sun X, Jin P, Kang W, Jia L, Xiong J, et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat Commun. 2022;13(1):4943.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X, Xu W. Neutrophils diminish T-cell immunity to foster gastric cancer progression: the role of GM-CSF/PD-L1/PD-1 signalling pathway. Gut. 2017;66(11):1878–80.

    CAS  PubMed  Google Scholar 

  57. Sun R, Xiong Y, Liu H, Gao C, Su L, Weng J, Yuan X, Zhang D, Feng J. Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis. Transl Oncol. 2020;13(10): 100825.

    PubMed  PubMed Central  Google Scholar 

  58. Greene S, Robbins Y, Mydlarz WK, Huynh AP, Schmitt NC, Friedman J, Horn LA, Palena C, Schlom J, Maeda DY, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin Cancer Res. 2020;26(6):1420–31.

    CAS  PubMed  Google Scholar 

  59. Purohit A, Saxena S, Varney M, Prajapati DR, Kozel JA, Lazenby A, Singh RK. Host Cxcr2-dependent regulation of pancreatic cancer growth, angiogenesis, and metastasis. Am J Pathol. 2021;191(4):759–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin SJ, Gagnon-Bartsch JA, Tan IB, Earle S, Ruff L, Pettinger K, Ylstra B, van Grieken N, Rha SY, Chung HC, et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64(11):1721–31.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (Grant No. 2021-I2M-1-067) and the Beijing Hope Run Special Fund (No. LC2021A20 and No. LC2021B16).

Author information

Authors and Affiliations

Authors

Contributions

LX performed the study concept and design; JY made the major revision for this manuscript; BW, YZ, ZL and WR performed the development of methodology and writing, review and revision of the paper; SW review the statistical methods in this research; NC and RC provided acquisition, analysis and interpretation of data, and statistical analysis; LW provided technical and material support. All authors read and approved the final paper.

Corresponding author

Correspondence to Liyan Xue.

Ethics declarations

Conflict of interest

None.

Ethical approval and consent to participate

Ethical approval was approved by the CICAMS ethics committee prior to commencing this study (No. 21/105-2776). All methods were carried out in accordance with relevant guidelines and regulations, and informed consent was obtained from all participants.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1Supplementary Fig. 1. The flowchart of this study (PDF 294 KB) (PDF 293 kb)

10120_2023_1446_MOESM2_ESM.pdf

Supplementary file2Supplementary Fig. 2. The survival curves of outside pattern and other 2 patterns cases in TADNI group (PDF 24 kb)

Supplementary file3Supplementary Fig. 3. Additional IHC staining. Markers and clones were shown (PDF 1108 kb)

10120_2023_1446_MOESM4_ESM.pdf

Supplementary file4Supplementary Fig. 4. (a) Multiplex IHC sections show that CXCR1 co-located with AE1/AE3 while CXCL8 co-located with CD66b. (b) Spatial distance analyses show the distance between of CD8+ cells / CD66b+ cells and tumor cells (PDF 414 kb)

10120_2023_1446_MOESM5_ESM.xlsx

Supplementary file5Supplementary Table 1. Detailed information of TADNI cases in our research. Supplementary Table 2. Antibodies' information. Supplement Table 3. TCGA cases grouping by TADNI vs nTADNI. Supplement Table 4. Nanostring RNA expression results. Supplement Table 5. Neutrophils percentage for each tumor samples in GSM7446522 dataset. Supplement Table 6. Spatial analyses results in five recent TADNI cases (XLSX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhu, Y., Wang, S. et al. Gastric tubular adenocarcinoma with diffuse neutrophils infiltrating: characteristics and probable treatment strategy. Gastric Cancer 27, 86–101 (2024). https://doi.org/10.1007/s10120-023-01446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10120-023-01446-6

Keywords

Navigation