Skip to main content
Log in

Research on the Dynamic Compressibility of Polyurethane Microcellular Elastomer and its Application for Impact Resistance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The packaging materials with cushioning performance are used to prevent the internal contents from being damaged by the impact and vibration of external forces. The polyurethane microcellular elastomers (PUMEs) can absorb energy through cell collapse and molecular chain creep. In this study, PUMEs with different densities were investigated by scanning electron microscopy, dynamic mechanical analysis and dynamic compression tests. PUMEs exhibited significant impact resistance and the maximum peak stress attenuation ratio reached 73.33%. The protective equipment was made by PUME with the optimal density of 600 kg/m3, and then the acceleration sensing device installed with the same protective equipment fell from a height of 3, 5 and 10 m to evaluate the energy-absorbing property and reusability of PUMEs. The results showed that PUMEs equipment reduced the peak acceleration of the device by 93.84%, with a maximum deviation of 9% between actual test and simulation, and shortened the impact time of first landing by 57.39%. In addition, the equipment PUMEs equipment could effectively reduce the stress on the protected items.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: https://doi.org/10.57760/sciencedb.j00189.00045) for this paper is available in the Data Repository of China Association for Science and Technology database (https://www.sddb.cn/c/cjps).

References

  1. Li, P.; Guo, Y. B.; Zhou, M. W.; Shim, V. P. W. Response of anisotropic polyurethane foam to compression at different loading angles and strain rates. Int. J. Impact. Eng. 2019, 127, 154–168.

    Article  Google Scholar 

  2. Hwang, B. K.; Kim, S. K.; Kim, J. H.; Kim, J. D.; Lee, J. M. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures. Int. J. Mech. Sci. 2020, 180.

  3. Linul, E.; Serban, D. A.; Voiconi, T.; Marsavina, L.; Sadowski, T. Energy-absorption and efficiency diagrams of rigid PUR foams. Key Eng. Mater. 2014, 601, 246–249.

    Article  Google Scholar 

  4. Avalle, M.; Belingardi, G.; Montanini, R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact. Eng. 2001, 25, 455–472.

    Article  Google Scholar 

  5. Gibson, L. J. Modelling the mechanical behavior of cellular materials. Mat. Sci. Eng. 1989, 110, 1–36.

    Article  Google Scholar 

  6. Fan, J. T.; Weerheijm, J.; Sluys, L. J. High-trrain-rate tensile mechanical response of a polyurethane elastomeric material. Polymer 2015, 65, 72–80.

    Article  CAS  Google Scholar 

  7. Zhao, Z.; Li, X.; Jiang, H.; Su, X.; Zhang, X.; Zou, M. Study on the mechanical properties and energy absorbing capability of polyurethane microcellular elastomers under different compressive strain rates. Polymers 2023, 15, 778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes. Polymer 2006, 47, 319–329.

    Article  CAS  Google Scholar 

  9. Cho, H.; Mayer, S.; Poselt, E.; Susoff, M.; Veld, P. J.; Rutledge, G. C.; Boyce, M. C. Deformation mechanisms of thermoplastic elastomers: stress-strain behavior and constitutive modeling. Polymer 2017, 128, 87–99.

    Article  CAS  Google Scholar 

  10. Doman, D. A.; Cronin, D. S.; Salisbury, C. P. Characterization of polyurethane rubber at high deformation rates. Exp. Mech. 2006, 46, 367–376.

    Article  CAS  Google Scholar 

  11. Zhang, L.; Yao, X.; Zang, S.; Gu, Y. Temperature- and strain rate-dependent constitutive modeling of the large deformation behavior of a transparent polyurethane interlayer. Polym. Eng. Sci. 2015, 55, 1864–1872.

    Article  CAS  Google Scholar 

  12. Wang, Y.; Luo, W.; Huang, J.; Peng, C.; Wang, H.; Yuan, C.; Chen, G.; Zeng, B.; Dai, L. Simplification of hyperelastic constitutive model and finite element analysis of thermoplastic polyurethane elastomers. Macromol. Theory Simul. 2020, 29, 2000009.

    Article  CAS  Google Scholar 

  13. Xiao, Y.; Yin, J.; Zhang, X.; An, X.; Xiong, Y.; Sun, Y. Mechanical performance and cushioning energy absorption characteristics of rigid polyurethane foam at low and high strain rates. Polym. Test. 2022, 109, 107531.

    Article  CAS  Google Scholar 

  14. Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polym. Test. 2021, 93, 106917.

    Article  CAS  Google Scholar 

  15. AbdulLatif, A.; Menouer, A.; Baleh, R.; Deiab, I. M. Plastic response of open cell aluminum foams of highly uniform architecture under different quasi-static combined biaxial compression-torsion loading paths. Mat. Sci. Eng. B- Solid. 2021, 266, 115051.

    Article  CAS  Google Scholar 

  16. Iqbal, N.; Mubashar, A.; Ahmed, S.; Arif, N.; Din, E. U. Investigating relative density effects on quasi-static response of high-density rigid polyurethane foam (RPUF). Mater. Today Commun. 2022, 31, 103320.

    Article  CAS  Google Scholar 

  17. Haifeng, L.; Jianguo, N. Mechanical behavior of reinforced concrete subjected to impact loading. Mech. Mater. 2009, 41, 1298–1308.

    Article  Google Scholar 

  18. Enfedaque, A.; Cendón, D.; Gálvez, F.; Sánchez-Gálvez, V. Failure and impact behavior of facade panels made of glass fiber reinforced cement (GRC). Eng. Failure Anal. 2011, 18, 1652–1663.

    Article  CAS  Google Scholar 

  19. Tang, E.; Wang, L.; Wang, R.; Han, Y. Relationships between shock stress and electrical output characteristics for PZT-5H under high-velocity impact loading. Mech. Adv. Mater. Struct. 2020, 27, 2035–2042.

    Article  Google Scholar 

  20. Tong, X.; Hoo Fatt, M. S.; Vedire, A. R. A new crushable foam model for polymer-foam core sandwich structures. Int. J. Crashworthines. 2021, 27, 1460–1480.

    Article  Google Scholar 

  21. Fatt, M. S. H.; Zhong, C.; Gadepalli, P. C.; Tong, X. Crushable multiaxial behavior of sandwich foam cores: Pressure vessel experiments. J. Sandwich Struct. Mater. 2020, 23, 2028–2063.

    Article  Google Scholar 

  22. Tong, X.; Hoo Fatt, M. S.; Zhong, C.; Alkhtany, M. Predicting anisotropic crushable polymer foam behavior in sandwich structures. Multiscale Multi. Mod. 2020, 3, 245–264.

    Article  Google Scholar 

  23. Wang, S.; Gong, M. Numerical simulation study on blasting demolition of 84 m tall building. IOP Conference Series: Earth and Environmental Science 2019, 252, 022145.

    Google Scholar 

  24. Chen, Y. F.; Yi, G. X. Dynamic response analysis of the reinforced concrete column under the effect of explosive impact load. Adv. Mater. Res. 2013, 681, 99–104.

    Article  Google Scholar 

  25. Luo, N.; Wang, D. N.; Ying S. K. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer. Macromolecules 1997, 30, 4405–4409.

    Article  Google Scholar 

  26. Yilgör, I.; Yilgör, E.; Wilkes, G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 2015, 58, A1–A36.

    Article  Google Scholar 

  27. Parcheta, P.; Głowińska, E.; Datta, J. Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers. Eur. Polym. J. 2020, 123, 109422.

    Article  CAS  Google Scholar 

  28. Zhao, Z.; Jiang, H.; Li, X.; Su, X.; Wu, X.; Zhang, X.; Zou, M. Effects of closed porosity and density on mechanical properties and energy absorption of polyurethane elastomer foam. Polym. Mater. Sci. Eng. 2023, 39, 35–44.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22270509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Jiang or Mei-Shuai Zou.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZY., Jiang, H., Li, XD. et al. Research on the Dynamic Compressibility of Polyurethane Microcellular Elastomer and its Application for Impact Resistance. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3134-4

Keywords

Navigation