Skip to main content
Log in

Polyelectrolytes of Inorganic Polyoxometalates: Prospecting New Charged Polymers for Advanced Applications

  • Perspective
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyelectrolytes are charged polymers comprising macromolecules in which substantial portions of the constituent units contain cationic (e.g., pyridinium, ammonium) or anionic (e.g., sulfonate, carboxylate) groups, which possess special functions from the features of counterions, such as dissociation to charged species, mechanical stability, phase behavior, etc. Therefore, functional polyelectrolytes have been widely applied in many fields. In this perspective, we present some progresses in the studies of poly(polyoxometalate)s, denoted as poly(POM)s, as a kind of new charged polymers/polyelectrolytes, by covalent bonding between the inorganic polyoxometalate (POM) clusters and the organic polymer chains. According to the distinct positions of POMs in polymer chain and functions of poly(POM)s, they are divided into the following four categories: crosslinked poly(POM); side-chain poly(POM); backbone poly(POM), including poly(POM)-conjugated polymer hybrid and block poly(POM)-polymer; and POM-based covalent organic framework (PCOF). This perspective introduces the synthesis methods of poly(POM) polyelectrolytes and their macromolecular and aggregate structural characteristics, while also focusing on their properties and functions. Their application areas include catalysis, thermal resistance, optical functions, fuel cells and batteries, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang, W. Novel functional materials based on polymer-polyoxometalate hybrids. Chinese Polym. Bull. (in Chinese) 2013, 87–100.

  2. Hess, M.; Jones, R. G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R. F. T.; Tabak, D.; Vohlídal, J.; Wilks, E. S. Terminology of polymers containing ionizable or ionic groups and of polymers containing ions. Pure Appl. Chem. 2006, 78, 2067–2074.

    Article  CAS  Google Scholar 

  3. Chollakup, R.; Beck, J. B.; Dirnberger, K.; Tirrell, M.; Eisenbach, C. D. Polyelectrolyte molecular weight and salt effects on the phase behavior and coacervation of aqueous solutions of poly(acrylic acid) sodium salt and poly(allylamine) hydrochloride. Macromolecules 2013, 46, 2376–2390.

    Article  CAS  Google Scholar 

  4. Wu, J. K.; Wang, N. X.; Hung, W. S.; Zhao, Q.; Lee, K. R.; An, Q. F. Self-assembled soft nanoparticle membranes with programmed free volume hierarchy. J. Mater. Chem. A 2018, 6, 22925–22930.

    Article  CAS  Google Scholar 

  5. Mecerreyes, D. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629–1648.

    Article  CAS  Google Scholar 

  6. Xu, W.; Ledin, P. A.; Shevchenko, V. V.; Tsukruk, V. V. Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Appl. Mater. Interfaces 2015, 7, 12570–12596.

    Article  CAS  PubMed  Google Scholar 

  7. Li, X.; Liu, C.; Van der Bruggen, B. Polyelectrolytes self-assembly: versatile membrane fabrication strategy. J. Mater. Chem. A 2020, 8, 20870–20896.

    Article  CAS  Google Scholar 

  8. Dobrynin, A.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049–1118.

    Article  CAS  Google Scholar 

  9. Whittell, G. R.; Hager, M. D.; Schubert, U. S.; Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 2011, 10, 176–188.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, W.; Liu, S.; Yan, J.; Zhong, F.; Jia, N.; Yan, Y.; Zhang, Q. Metallo-polyelectrolyte-based robust anion exchange membranes via acetalation of a commodity polymer. Macromolecules 2021, 54, 9145–9154.

    Article  CAS  Google Scholar 

  11. Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev. 2016, 45, 5232–5263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding, D.; Wang, G.; Liu, J.; Li, K.; Pu, K. Y.; Hu, Y.; Ng, J. C. Y.; Tang, B. Z.; Liu, B. Hyperbranched conjugated polyelectrolyte for dual-modality fluorescence and magnetic resonance cancer imaging. Small 2012, 8, 3523–3530.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, Y.; Dong, W. F.; Hempenius, M. A.; Möhwald, H.; Julius Vancso, G. Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater. 2006, 5, 724–729.

    Article  CAS  PubMed  Google Scholar 

  14. Bernards, D. A.; Desai, T. A. Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter 2010, 6, 1621–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luzinov, I.; Minko, S.; Tsukruk, V. V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog. Polym. Sci. 2004, 29, 635–698.

    Article  CAS  Google Scholar 

  16. Nazir, N. A.; Kyu, T.; Reinsel, A. M.; Espe, M.; Nosaka, M.; Kudo, H.; Nishikubo, T. Incorporation of hyperbranched supramolecules into Nafion ionic domains via impregnation and in-situ photopolymerization. Polymers 2011, 3, 2018–2038.

    Article  CAS  Google Scholar 

  17. Cho, B. K. Nanostructured organic electrolytes. RSC Adv. 2014, 4, 395–405.

    Article  CAS  Google Scholar 

  18. Wang, M.; Zhao, J.; Wang, X.; Liu, A.; Gleason, K. K. Recent progress on submicron gas-selective polymeric membranes. J. Mater. Chem. A 2017, 5, 8860–8886.

    Article  CAS  Google Scholar 

  19. Zhu, T.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M. A.; Yan, Y.; Tang, C. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nat. Commun. 2018, 9, 4329.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pope, M. T.; Müller, A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. 1991, 30, 34–48.

    Article  Google Scholar 

  21. Timofeeva, M. N. Acid catalysis by heteropoly acids. Appl. Catal. A 2003, 256, 19–35.

    Article  CAS  Google Scholar 

  22. Miras, H. N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

    Article  CAS  PubMed  Google Scholar 

  23. Qi, W.; Wu, L. Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym. Int. 2009, 58, 1217–1225.

    Article  CAS  Google Scholar 

  24. Santoni, M.-P.; Hanan, G. S.; Hasenknopf, B. Covalent multicomponent systems of polyoxometalates and metal complexes: toward multi-functional organic-inorganic hybrids in molecular and material sciences. Coord. Chem. Rev. 2014, 281, 64–85.

    Article  CAS  Google Scholar 

  25. Zheng, Z.; Zhou, Q.; Li, M.; Yin, P. Poly(ethylene glycol) nanocomposites of subnanometer metal oxide clusters for dynamic semisolid proton conductive electrolytes. Chem. Sci. 2019, 10, 7333–7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carraro, M.; Gross, S. Hybrid materials based on the embedding of organically modified transition metal oxoclusters or polyoxometalates into polymers for functional applications: a review. Materials 2014, 7, 3956–3989.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu, H.; Yang, H. K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886–897.

    Article  CAS  Google Scholar 

  28. Hill, C. L.; Prosser-McCartha, C. M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 1995, 143, 407–455.

    Article  CAS  Google Scholar 

  29. Proust, A.; Thouvenot, R.; Gouzerh, P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem. Commun. 2008, 1837–1852.

  30. Judeinstein, P. Synthesis and properties of polyoxometalates based inorganic-organic polymers. Chem. Mater. 1992, 4, 4–7.

    Article  CAS  Google Scholar 

  31. Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Incorporation of magnetic nanoparticles in new hybrid networks based on heteropolyanions and polyacrylamide. Angew. Chem. Int. Ed. 1999, 38, 3672–3675.

    Article  CAS  Google Scholar 

  32. Mayer, C. R.; Thouvenot, R.; Lalot, T. New hybrid covalent networks based on polyoxometalates: part 1. Hybrid networks based on poly(ethyl methacrylate) chains covalently cross-linked by heteropolyanions: synthesis and swelling properties. Chem. Mater. 2000, 12, 257–260.

    Article  CAS  Google Scholar 

  33. Mayer, C. R.; Thouvenot, R.; Lalot, T. Hybrid hydrogels obtained by the copolymerization of acrylamide with aggregates of methacryloyl derivatives of polyoxotungstates. A comparison with polyacrylamide hydrogels with trapped aggregates. Macromolecules 2000, 33, 4433–4437.

    Article  CAS  Google Scholar 

  34. Horan, J. L.; Kuo, M. C.; Ren, H.; Jessop, J. D.; Frey, M. H.; Herring, A. M. PolyPOM hybrid membranes from practical chemistries with very high proton conductivities. ECS Trans. 2011, 41, 1595–1601.

    Article  CAS  Google Scholar 

  35. Moore, A. R.; Kwen, H.; Beatty A. M.; Maatta, E. A. Organoimido-polyoxometalates as polymer pendants. Chem. Commun. 2000, 1793–1794.

  36. Wei, Y.; Xu, B.; Barnes, C. L.; Peng, Z. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates. J. Am. Chem. Soc. 2001, 123, 4083–4084.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, B.; Wei, Y.; Barnes, C. L.; Peng, Z. Hybrid molecular materials based on covalently linked inorganic polyoxometalates and organic conjugated systems. Angew. Chem. Int. Ed. 2001, 40, 2290–2292.

    Article  CAS  Google Scholar 

  38. Xu, L.; Lu, M.; Xu, B.; Wei, Y.; Peng, Z.; Powell, D. R. Towards main-chain-polyoxometalate-containing hybrid polymers: a highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates. Angew. Chem. Int. Ed. 2002, 41, 4129–4132.

    Article  CAS  Google Scholar 

  39. Han, Y.; Xiao, Y.; Zhang, Z.; Liu, B.; Zheng, P.; He, S.; Wang, W. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 2009, 42, 6543–6548.

    Article  CAS  Google Scholar 

  40. Miao, W. K.; Yan, Y. K.; Wang, X. L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function. ACS Macro Lett. 2014, 3, 211–215.

    Article  CAS  PubMed  Google Scholar 

  41. Lesage de la Haye, J.; Beaunier, P.; Ruhlmann, L.; Hasenknopf, B.; Lacôte, E.; Rieger, J. Synthesis of well-defined Dawson-type poly(N,N-diethylacrylamide) organopolyoxometalates. ChemPlusChem 2014, 79, 250–256.

    Article  CAS  PubMed  Google Scholar 

  42. Hasegawa, T.; Shimizu, K.; Seki, H.; Murakami, H.; Yoshida, S.; Yoza, K.; Nomiya, K. Polymerizable inorganic–organic hybrid: syntheses and structures of mono-lacunary Dawson polyoxometalate-based olefin-containing organosilyl derivatives. Inorg. Chem. Commun. 2007, 10, 1140–1144.

    Article  CAS  Google Scholar 

  43. Hasegawa, T.; Murakami, H.; Shimizu, K.; Kasahara, Y.; Yoshida, S.; Kurashina, T.; Seki, H.; Nomiya, K. Formation of inorganic protonic-acid polymer via inorganic-organic hybridization: synthesis and characterization of polymerizable olefinic organosilyl derivatives of mono-lacunary Dawson polyoxometalate. Inorg. Chim. Acta 2008, 361, 1385–1394.

    Article  CAS  Google Scholar 

  44. Kalyani, V.; Satyanarayana, V. S. V.; Singh, V.; Pradeep, C. P.; Ghosh, S.; Sharma, S. K.; Gonsalves, K. E. New polyoxometalates containing hybrid polymers and their potential for nanopatterning. Chem. Eur. J. 2015, 21, 2250–2258.

    Article  CAS  PubMed  Google Scholar 

  45. Hu, M.-B.; Xia, N.; Yu, W.; Ma, C.; Tang, J.; Hou, Z. Y.; Zheng, P.; Wang, W. A click chemistry approach to the efficient synthesis of polyoxometalate-polymer hybrids with well-defined structures. Polym. Chem. 2012, 3, 617–620.

    Article  CAS  Google Scholar 

  46. Macdonell, A.; Johnson, N. A. B.; Surman, A. J.; Cronin, L. Configurable nanosized metal oxide oligomers via precise “click” coupling control of hybrid polyoxometalates. J. Am. Chem. Soc. 2015, 137, 5662–5665.

    Article  CAS  PubMed  Google Scholar 

  47. Guan, W.; Wang, G.; Ding, J.; Li, B.; Wu, L. A supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain. Chem. Commun. 2019, 55, 10788–10791.

    Article  CAS  Google Scholar 

  48. Chen, X.; Wu, H.; Shi, X.; Wu, L. polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale 2023, 15, 9242–9255.

    Article  CAS  PubMed  Google Scholar 

  49. Ren, Y.; Wang, M.; Chen, X.; Yue, B.; He, H. Heterogeneous catalysis of polyoxometalate based organic-inorganic hybrids. Materials 2015, 8, 1545–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao, Y.; Chen, D.; Ma, N.; Hou, Z.; Hu, M.; Wang, C.; Wang, W. Covalent immobilization of a polyoxometalate in a porous polymer matrix: a heterogeneous catalyst towards sustainability. RSC Adv. 2013, 3, 21544–21551.

    Article  CAS  Google Scholar 

  51. Motz, A. R.; Kuo, M.-C.; Horan, J. L.; Yadav, R.; Seifert, S.; Pandey, T. P.; Galioto, S.; Yang, Y.; Dale, N. V.; Hamrock, S. J.; Herring, A. M. Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells. Energy Environ. Sci. 2018, 11, 1499–1509.

    Article  CAS  Google Scholar 

  52. Miao, W. K.; Yi, A.; Yan, Y. K.; Ren, L. J.; Chen, D.; Wang, C. H.; Wang, W. A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity. Polym. Chem. 2015, 6, 7418–7426.

    Article  CAS  Google Scholar 

  53. Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Lin, Y.; Wang, W. Twining poly(polyoxometalate) chains into nanoropes. Chem. Eur. J. 2019, 25, 13396–13401.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Wang, W. Visualization of two-dimensional single chains of hybrid polyelectrolytes on solid surface. Chinese J. Polym. Sci. 2021, 39, 716–724.

    Article  CAS  Google Scholar 

  55. Cheng, Q.; Miao, W. K.; Yan, Y. K.; Wang, W. Synthesis of solution-processable block and random copolymers of poly(polyoxometalate norbornene) and poly(hexanoic acid norbornene) and study on their catalytic activity. Acta Polymerica Sinica (in Chinese) 2017, 1159–1168.

  56. Yin, Y.; Li, H.; Wu, H.; Wang, W.; Jiang, Z. Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone. Int. J. Hydrogen Energy 2020, 45, 15495–15506.

    Article  CAS  Google Scholar 

  57. Lu, Z. Q.; Zhang, L. L.; Yan, Y.; Wang, W. Polyelectrolytes of inorganic polyoxometalates: acids, salts, and complexes. Macromolecules 2021, 54, 6891–6900.

    Article  CAS  Google Scholar 

  58. Lu, Z. Q.; Yin, Z.; Zhang, L. L.; Yan, Y.; Jiang, Z.; Wu, H.; Wang, W. Synthesis of proton conductive copolymers of inorganic polyacid cluster polyelectrolytes and PEO bottlebrush polymers. Macromolecules 2022, 55, 3301–3310.

    Article  CAS  Google Scholar 

  59. Ito, T.; Otobe, S.; Oda, T.; Kojima, T.; Ono, S.; Watanabe, M.; Kiyota, Y.; Misawa, T.; Koguchi, S.; Higuchi, M.; Kawano, M.; Nagase, Y. Polymerizable ionic liquid crystals comprising polyoxometalate clusters toward inorganic-organic hybrid solid electrolytes. Polymers 2017, 9, 290–303.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 2013, 135, 1193–1196.

    Article  CAS  PubMed  Google Scholar 

  61. Gao, Q.; Wang, X. L.; Xu, J.; Bu, X. H. The first demonstration of the gyroid in a polyoxometalate-based open framework with high proton conductivity. Chem. Eur. J. 2016, 22, 9082–9086.

    Article  CAS  PubMed  Google Scholar 

  62. Yan, T. T.; Xuan, Z. X.; Wang, S.; Zhang, X.; Luo, F. Facile one-pot construction of polyoxometalate-based lanthanide-amino acid coordination polymers for proton conduction. Inorg. Chem. Commun. 2019, 105, 147–150.

    Article  Google Scholar 

  63. Iwano, T.; Miyazawa, S.; Osuga, R.; Kondo, J. N.; Honjo, K.; Kitao, T.; Uemura, T.; Uchida, S. Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity. Commun. Chem. 2019, 2, 9.

    Article  Google Scholar 

  64. Iwano, T.; Shitamatsu, K.; Ogiwara, N.; Okuno, M.; Kikukawa, Y.; Ikemoto, S.; Shirai, S.; Muratsugu, S.; Waddell, P. G.; Errington, R. J.; Sadakane, M.; Uchida, S. Ultrahigh proton conduction via extended hydrogen-bonding network in a Preyssler-type polyoxometalate-based framework functionalized with a lanthanide ion. ACS Appl. Mater. Interfaces 2021, 13, 19138–19147.

    Article  CAS  PubMed  Google Scholar 

  65. Horan, J. L.; Lingutla, A.; Ren, H.; Kuo, M. C.; Sachdeva, S.; Yang, Y.; Seifert, S.; Greenlee, L. F.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; Herring, A. M. Fast proton conduction facilitated by minimum water in a series of divinylsilyl-11-silicotungstic acid-co-butyl acrylate-co-hexanediol diacrylate polymers. J. Phys. Chem. C 2014, 118, 135–144.

    Article  CAS  Google Scholar 

  66. Sun, S.; Zhu, L. J.; Li, K.; Cheng, D. M.; Li, B.; Wang, Y. H.; Zang, H. Y.; Li, Y. G. A Preyssler-type polyoxometalate-based coordination supramolecule with proton conducting property. Polyhedron 2019, 169, 84–88.

    Article  CAS  Google Scholar 

  67. Lu, M.; Wei, Y.; Xu, B.; Cheung, C. F. C.; Peng, Z.; Powell, D. Hybrid molecular dumbbells: bridging polyoxometalate clusters with an organic π-conjugated rod. Angew. Chem. Int. Ed. 2002, 41, 1566–1568.

    Article  CAS  Google Scholar 

  68. Lu, M.; Xie, B.; Kang, J.; Chen, F. C.; Yang, Y.; Peng, Z. Synthesis of main-chain polyoxometalate-containing hybrid polymers and their applications in photovoltaic cells. Chem. Mater. 2005, 17, 402–408.

    Article  CAS  Google Scholar 

  69. Xu, B.; Lu, M.; Kang, J.; Wang, D.; Brown, J.; Peng, Z. Synthesis and optical properties of conjugated polymers containing polyoxometalate clusters as side-chain pendants. Chem. Mater. 2005, 17, 2841–2851.

    Article  CAS  Google Scholar 

  70. Kang, J.; Xu, B.; Peng, Z.; Zhu, X.; Wei, Y.; Powell, D. R. Molecular and polymeric hybrids based on covalently linked polyoxometalates and transition-metal complexes Angew. Chem. Int. Ed. 2005, 44, 6902–6905.

    Article  CAS  Google Scholar 

  71. Chakraborty, S.; Keightley, A.; Dusevich, V.; Wang, Y.; Peng, Z. Synthesis and optical properties of a rod-coil diblock copolymer with polyoxometalate clusters covalently attached to the coil block. Chem. Mater. 2010, 22, 3995–4006.

    Article  CAS  Google Scholar 

  72. Li, Y.; Jin, L.; Chakraborty, S.; Li, S.; Lu, P.; Zhu, D. M.; Yan, X.; Peng, Z. Photovoltaic properties and femtosecond time-resolved fluorescence study of polyoxometalate-containing rod-coil diblock copolymers. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 122–133.

    Article  Google Scholar 

  73. Wang, R.; Li, Y.; Shetye, K.; Dutta, T.; Jin, L.; Li, S.; Peng, Z. Luminescent polythiophene-based main-chain polyoxometalate-containing conjugated polymers with improved solar-cell performance. Eur. J. Inorg. Chem. 2015, 656–663.

  74. Li, Y.; Shetye, K.; Baral, K.; Jin, L.; Oster, J. D.; Zhu, D. M.; Peng, Z. Main-chain polyoxometalate-containing donor–acceptor conjugated copolymers: synthesis, characterization, morphological studies and applications in single-component photovoltaic cells. RSC Adv. 2016, 6, 29909–29919.

    Article  CAS  Google Scholar 

  75. Yin, P.; Jin, L.; Li, D.; Cheng, P.; Vezenov, D. V.; Bitterlich, E.; Wu, X.; Peng, Z.; Liu, T. Supramolecular assembly of conjugated polymers containing polyoxometalate terminal side chains in polar and nonpolar solvents. Chem. Eur. J. 2012, 18, 6754–6758.

    Article  CAS  PubMed  Google Scholar 

  76. Haso, F.; Wang, R.; Yin, P.; Zhou, J.; Jin, L.; Peng, Z.; Liu, T. Supramolecular assemblies of polyoxometalate-tethered diblock copolymers with tunable sizes in N-methyl-2-pyrrolidone/toluene mixed solvents. Eur. J. Inorg. Chem. 2014, 4589–4592.

  77. Haso, F.; Wang, R.; He, J.; Luo, J.; Eghtesadi, S. A.; Peng, Z.; Liu, T. New J. Chem. 2016, 40, 910–913.

    Article  CAS  Google Scholar 

  78. Han, Y. K.; Zhang, Z. J.; Wang, Y. L.; Xia, N.; Liu, B.; Xiao, Y.; Jin, L. X.; Zheng, P.; Wang, W. An intriguing morphology evolution of polyoxometalate-polystyrene hybrid amphiphiles from vesicles to tubular aggregates. Macromol. Chem. Phys. 2011, 212, 81–87.

    Article  CAS  Google Scholar 

  79. Xiao, Y.; Han, Y. K.; Xia, N.; Hu, M. B.; Zheng, P.; Wang, W. Macromolecule-to-amphiphile conversion process of a polyoxometalate-polymer hybrid and assembled hybrid vesicles. Chem. Eur. J. 2012, 18, 11325–11333.

    Article  CAS  PubMed  Google Scholar 

  80. Yu, S.-J.; Han, Y. K.; Wang, W. Unravelling concentration-regulated self-assembly of a protonated polyoxometalate-polystyrene hybrid. Polymer 2019, 162, 73–79.

    Article  CAS  Google Scholar 

  81. Tang, J.; Yu, W.; Hu, M. B.; Xiao, Y.; Wang, X. G.; Ren, L. J.; Zheng, P.; Zhu, W.; Chen, Y.; Wang, W. Bottom-up hybridization: a strategy for the preparation of a thermostable polyoxometalate-polymer hybrid with hierarchical hybrid structures. ChemPlusChem 2014, 79, 1455–1462.

    Article  CAS  Google Scholar 

  82. Tang, J.; Ma, C.; Li, X. Y.; Ren, L. J.; Wu, H.; Zheng, P.; Wang, W. Self-assembling a polyoxometalate-PEG hybrid into a nanoenhancer to tailor PEG properties. Macromolecules 2015, 48, 2723–2730.

    Article  CAS  Google Scholar 

  83. Tang, J.; Li, X. Y.; Wu, H.; Ren, L. J.; Zhang, Y. Q.; Yao, H. X.; Hu, M. B.; Wang, W. Tube-graft-sheet nano-objects created by a stepwise self-assembly of polymer-polyoxometalate hybrids. Langmuir 2016, 32, 460–467.

    Article  CAS  PubMed  Google Scholar 

  84. Li, X.; Wang, Z.; Hong, C.; Feng, F.; Yu, K.; Liu, H. Geometry-modulated self-assembly structures of covalent polyoxometalate-polymer hybrid in bulk and thin-film states. Macromolecules 2022, 55, 9583–9593.

    Article  CAS  Google Scholar 

  85. Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.

    Article  CAS  PubMed  Google Scholar 

  86. Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance J. Mater. Chem. A 2017, 5, 8477–8483.

    Article  CAS  Google Scholar 

  87. Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage. J. Mater. Chem. A 2018, 6, 8735–8741.

    Article  CAS  Google Scholar 

  88. Dey, C.; Kundu, T.; Banerjee, R. Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material. Chem. Commun. 2012, 48, 266–268.

    Article  CAS  Google Scholar 

  89. Xu, W.; Pei, X.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shandong Province of China (No. ZR2023QB278) and the National Natural Science Foundation of China (No. 92061120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo-Qun Lu or Wei Wang.

Ethics declarations

The authors declare no interest conflict.

Additional information

Biographies

Zhuo-Qun Lu received his B.S. degree in Chemistry from School of Chemistry and Chemical Engineering, Shandong University in 2016. He received his M.S. degree in Organic Chemistry from College of Chemistry, Nankai University in 2019, and Ph.D degree in Polymer Chemistry and Physics under the supervision of Prof. Wei Wang from the same college in 2022. His research interests focus on the synthesis of functional polyoxometalate hybrid polyelectrolyte/copolymer materials. He also works on organic synthesis of chiral molecules via transition metal-catalyzed transformations.

Wei Wang received his Ph.D. degree in Polymer Physics Chemistry under the supervision of Prof. Welheim Ruland from Philipps-University of Marburg in 1993, after he worked as a research associator at Institute of Chemistry, Chinese Academy of Sciences (1984–1987) and Max Planck Institute for Polymer Research with Prof. Gerhard Wegner, funded by Max Planck Institute Scholarship Program (1988–1992). He did postdoctoral research at Kyoto University on the fundamental physics of liquid crystalline polymers with Prof. Takeji Hashimoto, funded by Japan Science Promotion Society Postdoctoral Fellowship, from 1993 to 1995. He worked as a research fellow at Toray Industries, Japan (1995–1997) and Institute of Materials Research and Engineering, Singapore (1997–2002). He joined College of Chemistry, Nankai University and was promoted as a distinguished professor in 2002. He leads a group working on the fabrication of novel hybrid materials through the bottom-up constructing strategy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DY., Lu, ZQ. & Wang, W. Polyelectrolytes of Inorganic Polyoxometalates: Prospecting New Charged Polymers for Advanced Applications. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3126-4

Keywords

Navigation