Skip to main content
Log in

Visualization of Two-dimensional Single Chains of Hybrid Polyelectrolytes on Solid Surface

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The polyacidic character of polyoxometalate (POM) clusters endows high ionic conductivity, making these clusters good candidates for solar and fuel cells. Covalent bonding of clusters to polymer chains creates poly(POM)s that are polyelectrolytes with both cluster functions and polymer performance. Thus, solution-processable poly(POM)s are expected to be used as key materials in advanced devices. Further understanding of poly(POM)s will optimize the preparation process and improve device performance. Herein, we report a study of the first linear poly(POM)s by directly visualizing the chains using scanning transmission electron microscopy. Compared with traditional polymers, individual clusters of poly(POM)s can be directly visualized because of the resistance to electron-beam damage and the high contrast of the tungsten POM pendants. Thus, cluster aggregates with diverse shapes were observed. Counting the number of clusters in the aggregates allowed the degree of polymerization and molecular weight distribution to be determined, and studying the aggregate shapes revealed the presence of a curved semirigid chain in solution. Further study of shape diversity revealed that strong interactions between clusters determine the diverse chain shapes formed during solution processing. Fundamental insight is critical to understanding the formation of poly(POM) films from solutions as key functional materials, especially for fuel and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González-Moraga, G. Cluster chemistry: introduction to the chemistry of transition metal and main group element molecular clusters. Springer-Verlag, Berlin and Heidelberg, 1993.

    Google Scholar 

  2. Fehlner, T.; Halet, J. F.; Saillard, J. Y. Molecular clusters: a bridge to solid-state chemistry. Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  3. Jin, R. C.; Zhu, Y.; Qian, H. F. Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem. Eur. J. 2011, 17, 6584–6593.

    PubMed  CAS  Google Scholar 

  4. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    PubMed  CAS  Google Scholar 

  5. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    PubMed  CAS  Google Scholar 

  6. Claridge, S. A.; Castleman, A. W. Jr.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. Cluster-assembled materials. ACS Nano 2009, 3, 244–255.

    PubMed  CAS  Google Scholar 

  7. Pinkard, A.; Champsaur, A. M.; Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 2018, 51, 919–929.

    PubMed  CAS  Google Scholar 

  8. Li, S.; Wang, Z. Y.; Gao, G. G.; Li, B.; Luo, P.; Kong, Y. J.; Liu, H.; Zang, S. Q. Smart transformation of a polyhedral oligomeric silsesquioxane shell controlled by thiolate silver(I) nanocluster core in cluster@clusters dendrimers. Angew. Chem. Int. Ed. 2018, 57, 12775–12779.

    CAS  Google Scholar 

  9. Kickelbick, G.; Schubert, U. Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators. Monatshefte für Chemie 2001, 132, 13–30.

    CAS  Google Scholar 

  10. Schubert, U. Polymers reinforced by covalently bonded inorganic clusters. Chem. Mater. 2001, 13, 3487–3494.

    CAS  Google Scholar 

  11. Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83–114.

    CAS  Google Scholar 

  12. Schubert, U. Cluster-based inorganic-organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575–582.

    PubMed  CAS  Google Scholar 

  13. Elias, H. G. An introduction to polymer science. VCH, Weiheim, 1997.

    Google Scholar 

  14. Flory, P. J. Principles of polymer chemistry. Cornell University Press, Ithaca, NY, 1953.

    Google Scholar 

  15. Kumaki, J.; Nishikawa, Y.; Hashimoto, T. Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J. Am. Chem. Soc. 1996, 118, 3321–3322.

    CAS  Google Scholar 

  16. Sugihara, K.; Kumaki, J. Visualization of two-dimensional single chain conformations solubilized in a miscible polymer blend monolayer by atomic force microscopy. J. Phys. Chem. B 2012, 116, 6561–6568.

    PubMed  CAS  Google Scholar 

  17. Wu, J.; Lieser, G.; Wegner, G. Direct imaging of individual shape-persistent macromolecules and their interaction by TEM. Adv. Mater. 1996, 8, 151–154.

    CAS  Google Scholar 

  18. Lee, J. K.; Bulut, I.; Rickhaus, M.; Sheng, Y.; Li, X.; Han, G. G. D.; Briggs, G. A. D.; Anderson, H. L.; Warner, J. H. Metal atom markers for imaging epitaxial molecular self-assembly on graphene by scanning transmission electron microscopy. ACS Nano 2019, 13, 7252–7260.

    PubMed  CAS  Google Scholar 

  19. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 1998, 391, 161–164.

    CAS  Google Scholar 

  20. Stocker, W.; Schürmann, B. L.; Rabe, J. P.; Förster, S.; Lindner, P.; Neubert, I.; Schlüter, A. D. Nanocylinder: shape control through implementation of steric strain. Adv. Mater. 1998, 10, 793–797.

    CAS  Google Scholar 

  21. Frauenrath, H. Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 2005, 30, 325–384.

    CAS  Google Scholar 

  22. Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33, 759–785.

    CAS  Google Scholar 

  23. Lyu, X. L.; Pan, H. B.; Shen, Z. H.; Fan, X. H. Self-assembly and properties of block copolymers containing mesogen-jacketed liquid crystalline polymers as rod blocks. Chinese J. Polym. Sci. 2018, 36, 811–821.

    CAS  Google Scholar 

  24. Messmer, D.; Böttcher, C.; Yu, H.; Halperin, A.; Binder, K.; Kröger, M.; Schlüter, A. D. 3D conformations of thick synthetic polymer chains observed by cryogenic electron microscopy. ACS Nano 2019, 13, 3466–3473.

    PubMed  CAS  Google Scholar 

  25. Midgley, P. A.; Weyland, M. 3D Electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431.

    PubMed  CAS  Google Scholar 

  26. Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378–400.

    PubMed  Google Scholar 

  27. Midgley, P. A.; Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 2009, 8, 271–280.

    PubMed  CAS  Google Scholar 

  28. Hill, C. L. Special thematic issue on polyoxometalates. Chem. Rev. 1998, 98, 1–390.

    PubMed  CAS  Google Scholar 

  29. Peng, Z. H. Rational synthesis of covalently bonded organic-inorganic hybrids. Angew. Chem. Int. Ed. 2004, 43, 930–935.

    CAS  Google Scholar 

  30. Qi, W.; Wu, L. X. Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym. Int. 2009, 58, 1217–1225.

    CAS  Google Scholar 

  31. Wu, H.; Yang, H. K.; Wang, W. Polyoxometalate/polymer hybrid materials: fabrication and properties. New J. Chem. 2016, 40, 886–897.

    CAS  Google Scholar 

  32. Yan, J.; Zheng, X. W.; Yao, J. H.; Xu, P.; Miao, Z. L.; Li, J. L.; Lv, Z. D.; Zhang, Q. Y.; Yan, Y. Metallopolymers from organically modified polyoxometalates (MOMPs): a review. J. Organometal. Chem. 2019, 884, 1–16.

    CAS  Google Scholar 

  33. Judeinstein, P. Synthesis and properties of polyoxometalates based inorganic-organic polymers. Chem. Mater. 1992, 4, 4–7.

    CAS  Google Scholar 

  34. Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Incorporation of magnetic nanoparticles in new hybrid networks based on heteropolyanions and polyacrylamide. Angew. Chem. Int. Ed. 1999, 38, 3672–3675.

    CAS  Google Scholar 

  35. Mayer, C. R.; Thouvenot, R. New hybrid covalent networks based on polyoxometalates: Part 1. Hybrid networks based on poly(ethyl methacrylate) chains covalently cross-linked by heteropolyanions: synthesis and swelling properties. Chem. Mater. 2000, 12, 257–260.

    CAS  Google Scholar 

  36. Mayer, C. R.; Thouvenot, R. Hybrid hydrogels obtained by the copolymerization of acrylamide with aggregates of methacryloyl derivatives of polyoxotungstates. A comparison with polyacrylamide hydrogels with trapped aggregates. Macromolecules 2000, 33, 4433–4437.

    CAS  Google Scholar 

  37. Xu, B. B.; Lu, M.; Kang, J. H.; Wang, D. G.; Brown, J.; Peng, Z. H. Synthesis and optical properties of conjugated polymers clusters as side-chain pendants. Chem. Mater. 2005, 17, 2841–2851.

    CAS  Google Scholar 

  38. Horan, J. L.; Genupur, A.; Ren, H.; Sikora, B. J.; Kuo, M. C.; Meng, F. Q.; Dec, S. F.; Haugen, G. M.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H. M. Herring, A. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications. ChemSusChem 2009, 2, 226–229.

    PubMed  CAS  Google Scholar 

  39. Chakraborty, S.; Keightley, A.; Dusevich, V.; Wang, Y.; Peng, Z. H. Synthesis and optical properties of a rod-coil diblock copolymer with polyoxometalate clusters covalently attached to the coil block. Chem. Mater. 2010, 22, 3995–4006.

    CAS  Google Scholar 

  40. Carraro, M.; Fiorani, G.; Mognon, L.; Caneva, F.; Gardan, M.; Maccato, C.; Bonchio, M. Hybrid polyoxotungstates as functional comonomers in new cross-linked catalytic polymers for sustainable oxidation with hydrogen peroxide. Chem. Eur. J. 2012, 18, 13195–13202.

    PubMed  CAS  Google Scholar 

  41. Miao, W. K.; Yan, Y. K.; Wang, X. L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function. ACS Macro Lett. 2014, 3, 211–215.

    CAS  Google Scholar 

  42. Tong, U S.; Chen, W.; Ritchie, C.; Wang, X. T.; Song, Y. F. Reversible light-driven polymerization of polyoxometalate tethered with coumarin molecules. Chem. Eur. J. 2014, 20, 1500–1504.

    PubMed  CAS  Google Scholar 

  43. Horan, J. L.; Lingutla, A.; Ren, H.; Kuo, M. C.; Sachdeva, S.; Yang, Y.; Seifert, S.; Greenlee, L. F.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; Herring, A. M. Fast proton conduction facilitated by minimum water in a series of divinylsilyl-11-silicotungstic acid-co-butyl acrylate-co-hexanediol diacrylate polymers. J. Phys. Chem. C 2014, 118, 135–144.

    CAS  Google Scholar 

  44. Miao, W. K.; Yi, A.; Yan, Y. K.; Ren, L. J.; Chen, D.; Wang, C. H.; Wang, W. A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity. Polym. Chem. 2015, 6, 7418–7426.

    CAS  Google Scholar 

  45. Cheng, Q.; Miao, W. K.; Yan, Y. K.; Wang, W. Synthesis of solution-processable block and random copolymers of poly(polyoxometalate norbornene) and poly(hexanoic acid norbornene) and study on their catalytic activity. Acta Polymerica Sinica (in Chinese) 2017, 1159–1168.

    Google Scholar 

  46. Guan, W.; Wang, G.; Ding, J.; Li, B.; Wu, L. A Supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain. Chem. Commun. 2019, 55, 10788–10791.

    CAS  Google Scholar 

  47. Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Lin, Y.; Wang, W. Twining poly(polyoxometalate) chains into nanoropes. Chem. Eur. J. 2019, 25, 13396–13401.

    PubMed  CAS  Google Scholar 

  48. Vasilopoulou, M.; Douvas, A. M.; Palilis, L. C.; Kennou, S.; Argitis, P. Old metal oxide clusters in new applications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics. J. Am. Chem. Soc. 2015, 137, 6844–6865.

    PubMed  CAS  Google Scholar 

  49. Kolesov, V. A.; Fuentes-Hernandez, C.; Chou, W. F.; Aizawa, N.; Larrain, F. A.; Wang, M.; Perrotta, A.; Choi, S.; Graham, S.; Bazan, G. C.; Nguyen, T. Q.; Marder, S. R.; Kippelen, B. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 2017, 16, 474–481.

    PubMed  CAS  Google Scholar 

  50. Hou, Y. Q.; Hill, C. L. Ydrolytically stable organic triester capped polyoxometalates with catalytic oxygenation activity of formula [RC(CH2O)3V3P2W15O59]6− (R = CH3, NO2, CH2OH). J. Am. Chem. Soc. 1993, 115, 11823–11830.

    CAS  Google Scholar 

  51. Hu, M. B.; Hou, Z. Y.; Hao, W. Q.; Xiao, Y.; Yu, W.; Ma, C.; Ren, L. J.; Zheng, P.; Wang, W. POM-organic-POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures. Langmuir 2013, 29, 5714–4722.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21334003 and 21674052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LL., Miao, WK., Ren, LJ. et al. Visualization of Two-dimensional Single Chains of Hybrid Polyelectrolytes on Solid Surface. Chin J Polym Sci 39, 716–724 (2021). https://doi.org/10.1007/s10118-021-2520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2520-4

Keywords

Navigation