Skip to main content
Log in

Exploring Trade-offs in Thermal Interface Materials: The Impact of Polymer-Filler Interfaces on Thermal Conductivity and Thixotropy

  • Research Article
  • Special Issue: Functional Polymer Materials
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Effective thermal transport across solid-solid interfaces, essential in thermal interface materials (TIMs), necessitates both optimal thixotropy and high thermal conductivity. The role of filler surface modification, a fundamental aspect of TIM fabrication, in influencing these properties is not fully understood. This study employs the use of a silane coupling agent (SCA) to modify alumina, integrating experimental approaches with molecular dynamics simulations, to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane (PDMS)-based TIMs. Our findings reveal that varying SCAs modify both interface binding energy and transition layer thickness. The interface binding energy restricts macromolecular segmental relaxation near the interface, hindering desirable thixotropy and bond line thickness. Conversely, the transition layer thickness at the interface positively influences thermal conductivity, facilitating phonon transport between the polymer and filler. Consequently, selecting an optimal SCA enables a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness, achieving an impressively low interface thermal resistance of just 2.45–4.29 K·mm2·W−1 at 40 psi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: kaiwu@scu.edu.cn

References

  1. Hansson, J.; Nilsson, T. M. J.; Ye, L.; Liu, J. Novel nanostructured thermal interface materials: a review. Int. Mater. Rev. 2017, 63, 22–45.

    Article  Google Scholar 

  2. Chung, D. D. L. Performance of thermal interface materials. Small 2022, 18, 2200693.

    Article  CAS  Google Scholar 

  3. Feng, C. P.; Bai, L.; Bao, R. Y.; Wang, S. W.; Liu, Z.; Yang, M.-B.; Chen, J.; Yang, W. Superior thermal interface materials for thermal management. Compos. Commun. 2019, 12, 80–85.

    Article  Google Scholar 

  4. Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. Rep. 2020, 142, 100580.

    Article  Google Scholar 

  5. Du, Y. K.; Shi, Z.-X.; Dong, S.; Jin, H.; Ke, X.; Zhao, P.; Jiang, B. B.; You, F. Recent progress in fabrication and structural design of thermal conductive polymer composites. Chinese J. Polym. Sci. 2024, 42, 277–291.

    Article  CAS  Google Scholar 

  6. Ji, Y.; Han, S. D.; Wu, H.; Guo, S. Y.; Zhang, F. S.; Qiu, J. H. Understanding the thermal impedance of silicone rubber/hexagonal boron nitride composites as thermal interface materials. Chinese J. Polym. Sci. 2024, 42, 352–363.

    Article  CAS  Google Scholar 

  7. Dou, Z.; Zhang, B.; Xu, P.; Fu, Q.; Wu, K. Dry-contact thermal interface material with the desired bond line thickness and ultralow applied thermal resistance. ACS Appl. Mater. Interfaces 2023, 15, 57602–57612.

    CAS  Google Scholar 

  8. Ruan, K.; Guo, Y.; Lu, C.; Shi, X.; Ma, T.; Zhang, Y.; Kong, J.; Gu, J. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, B.; Li, Y.; Chen, W.; Ding, B.; Chen, P.; Xia, R.; Qian, J. A dual non-covalent bonding constructed continuous interfacial structure for reducing interfacial thermal resistance. J. Mater. Chem. A 2022, 10, 13858–13867.

    Article  CAS  Google Scholar 

  10. Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2018, 13, 337–345.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, H. Y.; Yu, M. Y.; Liu, J.; Li, X.; Min, P.; Yu, Z. Z. Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 2022, 14, 129.

    Article  ADS  CAS  Google Scholar 

  12. Dai, W.; Ren, X. J.; Yan, Q.; Wang, S.; Yang, M.; Lv, L.; Ying, J.; Chen, L.; Tao, P.; Sun, L.; Xue, C.; Yu, J.; Song, C.; Nishimura, K.; Jiang, N.; Lin, C. T. Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 2022, 15, 9.

    Article  ADS  Google Scholar 

  13. Zhang, R. H.; Shi, X. T.; Tang, L.; Liu, Z.; Zhang, J. L.; Guo, Y. Q.; Gu, J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chinese J. Polym. Sci. 2020, 38, 730–739.

    Article  CAS  Google Scholar 

  14. Zhang, C.; Liu, J.; Sun, R.; Wong, C. P.; Ren, L.; Zeng, X. Effects of in situ modification of aluminum fillers on the rheological properties and thermal resistance of gel thermal interface materials. IEEE Transactions on Components, Packaging and Manufacturing Technology 2022, 12, 1302–1310.

    Article  Google Scholar 

  15. Zeng, X.; Zeng, X.; Fan, J.; Li, J.; Wang, Z.; Sun, R.; Ren, L.; Xia, X. Ultrahigh energy-dissipation thermal interface materials through anneal-induced disentanglement. ACS Mater. Lett. 2022, 4, 874–881.

    Article  CAS  Google Scholar 

  16. He, Q.; Qin, M.; Zhang, H.; Yue, J.; Peng, L.; Liu, G.; Feng, Y.; Feng, W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 2024, 11, 531–544.

    Article  CAS  PubMed  Google Scholar 

  17. Li, S. J.; Li, J. C.; Ji, P. Z.; Zhang, W. F.; Lu, Y. L.; Zhang, L. Q. Bubble-templated construction of three-dimensional ceramic network for enhanced thermal conductivity of silicone rubber composites. Chinese J. Polym. Sci. 2021, 39, 789–795.

    Article  CAS  Google Scholar 

  18. Zhang, J.; Dang, L.; Zhang, F.; Zhang, K.; Kong, Q.; Gu, J. Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au 2023, 3, 3424–3435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes. Chinese J. Polym. Sci. 2023, 41, 1921–1936.

    Article  CAS  Google Scholar 

  20. Zhao, H. Y.; Shu, C.; Wang, X.; Min, P.; Li, C.; Gao, F. L.; Li, X.; Yu, Z. Z. Bioinspired intelligent solar-responsive thermally conductive pyramidal phase change composites with radially oriented layered structures toward efficient solar-thermal-electric energy conversion. Adv. Funct. Mater. 2023, 33, 230527.

    Google Scholar 

  21. Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci. 2017, 35, 1497–1507.

    Article  CAS  Google Scholar 

  22. Lin, Y.; Kang, Q.; Liu, Y.; Zhu, Y.; Jiang, P.; Mai, Y. W.; Huang, X. Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 2023, 15, 31.

    Article  ADS  CAS  Google Scholar 

  23. Guo, C.; He, L.; Yao, Y.; Lin, W.; Zhang, Y.; Zhang, Q.; Wu, K.; Fu, Q. Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 2022, 14, 202.

    Article  ADS  CAS  Google Scholar 

  24. Ma, Q.; Wang, Z.; Liang, T.; Su, Y.; Li, J.; Yao, Y.; Zeng, X.; Pang, Y.; Han, M.; Zeng, X.; Xu, J.; Ren, L.; Sun, R. Unveiling the role of filler surface energy in enhancing thermal conductivity and mechanical properties of thermal interface materials. Compos. Part A: Appl. Sci. Manuf. 2022, 157, 106904.

    Article  CAS  Google Scholar 

  25. Xie, Z.; Dou, Z.; Wu, D.; Zeng, X.; Feng, Y.; Tian, Y.; Fu, Q.; Wu, K. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 2023, 33, 2214071.

    Article  CAS  Google Scholar 

  26. Cai, L.; Fan, J.; Ding, S.; He, D.; Zeng, X.; Sun, R.; Ren, L.; Xu, J.; Zeng, X. Soft composite gels with high toughness and low thermal resistance through lengthening polymer strands and controlling filler. Adv. Funct. Mater. 2023, 33, 2207143.

    Article  CAS  Google Scholar 

  27. Zhang, Z.; Ouyang, Y.; Cheng, Y.; Chen, J.; Li, N.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Zhang, F.; Sun, Y.; Guo, L.; Zhang, Y.; Liu, D.; Feng, W.; Shen, X.; Zheng, Q. Microstructural welding engineering of carbon nanotube/polydimethylsiloxane nanocomposites with improved interfacial thermal transport. Adv. Funct. Mater. 2023, 33, 2311906.

    Google Scholar 

  29. Tan, X.; Liu, T. H.; Zhou, W.; Yuan, Q.; Ying, J.; Yan, Q.; Lv, L.; Chen, L.; Wang, X.; Du, S.; Wan, Y. J.; Sun, R.; Nishimura, K.; Yu, J.; Jiang, N.; Dai, W.; Lin, C. T. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface. ACS Nano 2022, 16, 9254–9266.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D.; Wei, H.; Lin, Y.; Jiang, P.; Bao, H.; Huang, X. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering. Compos. Sci. Technol. 2021, 213, 108953.

    Article  CAS  Google Scholar 

  31. Yue, D. W.; Wang, H. Q.; Tao, H. Q.; Zheng, P.; Li, C. H.; Zuo, J. L. A Fast and room-temperature self-healing thermal conductive polymer composite. Chinese J. Polym. Sci. 2021, 39, 1328–1336.

    Article  CAS  Google Scholar 

  32. Luo, Z.; Yang, D.; Liu, J.; Zhao, H. Y.; Zhao, T.; Li, B. X.; Yang, W. G.; Yu, Z. Z. Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 2023, 33, 2212032.

    Article  CAS  Google Scholar 

  33. Tang, L.; Ruan, K.; Liu, X.; Tang, Y.; Zhang, Y.; Gu, J. Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 2023, 16, 38.

    Article  ADS  Google Scholar 

  34. Chen, X.; Wu, K.; Zhang, Y.; Liu, D.; Li, R.; Fu, Q. Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 2022, 34, 2206088.

    Article  CAS  Google Scholar 

  35. Wu, K.; Wang, J.; Liu, D.; Lei, C.; Liu, D.; Lei, W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible Film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  36. Yan, Q.; Alam, F. E.; Gao, J.; Dai, W.; Tan, X.; Lv, L.; Wang, J.; Zhang, H.; Chen, D.; Nishimura, K.; Wang, L.; Yu, J.; Lu, J.; Sun, R.; Xiang, R.; Maruyama, S.; Zhang, H.; Wu, S.; Jiang, N.; Lin, C. T. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

    Article  CAS  Google Scholar 

  37. Cheng, X.; He, D.; Zhou, M.; Zhang, P.; Wang, S.; Ren, L.; Sun, R.; Zeng, X. Can adhesion energy optimize interface thermal resistance at a soft/hard material interface. Nano Lett. 2023, 23, 6673–6680.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhao, Y.; Qi, X.; Ma, J.; Song, L.; Yang, Y.; Yang, Q. Interface of polyimide-silica grafted with different silane coupling agents: molecular dynamic simulation. J. Appl. Polym. Sci. 2017, 135, 45725.

    Article  Google Scholar 

  39. Guo, C.; Li, Y.; Xu, J.; Zhang, Q.; Wu, K.; Fu, Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 2022, 9, 1690–1699.

    Article  CAS  PubMed  Google Scholar 

  40. Memon, M. O.; Haillot, S.; Lafdi, K. Carbon nanofiber based buckypaper used as a thermal interface material. Carbon, 2011, 49, 3820–3828.

    Article  CAS  Google Scholar 

  41. Chen, H.; Chen, M.; Di, J.; Xu, G.; Li, H.; Li, Q. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J. Phys. Chem. C 2012, 116, 3903–3909.

    Article  CAS  Google Scholar 

  42. Gao, Y.; Liu, J. Gallium-based thermal interface material with high compliance and wettability. Appl. Phys. A 2012, 107, 701–708.

    Article  ADS  CAS  Google Scholar 

  43. Liu, J.; Sahaym, U.; Dutta, I.; Raj, R.; Renavikar, M.; Sidhu, R. S.; Mahajan, R. Interfacially engineered liquid-phase-sintered Cu-In composite solders for thermal interface material applications. J. Mater. Sci. 2014, 49, 7844–7854.

    Article  ADS  CAS  Google Scholar 

  44. Roy, C. K.; Bhavnani, S.; Hamilton, M. C.; Johnson, R. W.; Nguyen, J. L.; Knight, R. W.; Harris, D. K. Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int. J. Heat Mass Transfer 2015, 85, 996–1002.

    Article  CAS  Google Scholar 

  45. Sharma, M.; Chung, D. D. L. Solder-graphite network composite sheets as high-performance thermal interface materials. J. Electr. Mater. 2015, 44, 929–947.

    Article  ADS  CAS  Google Scholar 

  46. Yu, H.; Li, L.; Zhang, Y. Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scripta Materialia 2012, 66, 931–934.

    Article  CAS  Google Scholar 

  47. Zandén, C.; Luo, X.; Ye, L.; Liu, J. A new solder matrix nano polymer composite for thermal management applications. Compos. Sci. Technol. 2014, 94, 54–61.

    Article  Google Scholar 

  48. Cola, B. A.; Xu, X.; Fisher, T. S.; Capano, M. A.; Amama, P. B. Carbon nanotube array thermal interfaces for high-temperature silicon carbide devices. Nanoscale and Microscale Thermophys. Eng. 2008, 12, 228–237.

    Article  ADS  CAS  Google Scholar 

  49. Dutta, I.; Raj, R.; Kumar, P.; Chen, T.; Nagaraj, C. M.; Liu, J.; Renavikar, M.; Wakharkar, V. Liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications. J. Electr. Mater. 2009, 38, 2735–2745.

    Article  ADS  CAS  Google Scholar 

  50. Lin, W.; Zhang, R.; Moon, K. S.; Wong, C. P. Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 2010, 48, 107–113.

    Article  CAS  Google Scholar 

  51. Murugesan, M.; Zandén, C.; Luo, X.; Ye, L.; Jokubavicius, V.; Syväjärvi, M.; Liu, J. A carbon fiber solder matrix composite for thermal management of microelectronic devices. J. Mater. Chem. C 2014, 2, 7184–7187.

    Article  CAS  Google Scholar 

  52. Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Transactions on Components and Packaging Technologies 2007, 30, 92–100.

    Article  CAS  Google Scholar 

  53. Xu, J.; Fisher, T. S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat and Mass Transfer 2006, 49, 1658–1666.

    Article  CAS  Google Scholar 

  54. Su, Y.; Ma, Q.; Liang, T.; Yao, Y.; Jiao, Z.; Han, M.; Pang, Y.; Ren, L.; Zeng, X.; Xu, J.; Sun, R. Optimization of effective thermal conductivity of thermal interface materials based on the genetic algorithm-driven random thermal network model. ACS Appl. Mater. Interfaces 2021, 13, 45050–45058.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52373042 and 52103091), the National Key Research and Development Project of China (No. 2022YFB3806900) and the International Visiting Program for Excellent Young Scholars of SCU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3101_MOESM1_ESM.pdf

Exploring Trade-offs in Thermal Interface Materials: The Impact of Polymer-Filler Interfaces on Thermal Conductivity and Thixotropy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Dou, ZL., Zhang, YZ. et al. Exploring Trade-offs in Thermal Interface Materials: The Impact of Polymer-Filler Interfaces on Thermal Conductivity and Thixotropy. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3101-0

Keywords

Navigation