Skip to main content

Advertisement

Log in

High Impact Polylactide Based on Organosilicon Nucleation Agent

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Various sectors of the industry are searching for new materials with specific requirements, providing improved properties. The study presents novel composite materials based on polylactide that have been modified with the organosilicon compound, (3-thiopropyl) polysilsesquioxane (SSQ-SH). The SSQ-SH compound is a mixture of cage structures and not fully condensed random structures. The composite materials were obtained through injection moulding. The study includes a comprehensive characterization of the new materials that analyze their functional properties, such as rheology (MFR), mechanical strength (tensile strength, Charpy impact strength), and thermal properties. SEM microscopic photos were also taken to analyze the microstructure of the samples. The addition of a 5% by-weight organosilicon compound to polylactide resulted in a significant increase in MFR by 73.8% compared to the neat polymer. The greatest improvement in impact strength was achieved for the 5% SSQ-SH/PLA composite, increasing it by 32.0 kJ/m2 compared to PLA, which represents an increase of up to 187%. The conducted research confirms the possibility of modifying the properties of the polymer by employing organosilicon compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data presented in this study are available on request from the corresponding author. The data are not publicly available: bogdan.marciniec@amu.edu.pl (B.M.), robert.przekop@amu.edu.pl (R.E.P.)

References

  1. Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.

    Article  CAS  PubMed  Google Scholar 

  2. Sangeetha, V.; Deka, H.; Varghese, T.; Nayak, S. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 2016, 39, 81–101.

    Article  Google Scholar 

  3. Raquez, J.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542.

    Article  CAS  Google Scholar 

  4. Anderson, K.; Schreck, K.; Hillmyer, M. Toughening polylactide. Polym. Rev. 2008, 48, 85–108.

    Article  CAS  Google Scholar 

  5. Vink, E.; Rábago, K.; Glassner, D.; Gruber, P. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym. Degrad. Stabil. 2003, 80, 403–419.

    Article  CAS  Google Scholar 

  6. Hajighasemi, M.; Nocek, B.; Tchigvintsev, A.; Brown, G.; Flick, R.; Xu, X.; Cui, H.; Hai, T.; Joachimiak, A.; Golyshin, P.; Savchenko, A.; Edward, E.; Yakunin, A. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules 2016, 17, 2027–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farah, S.; Anderson, D.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv. Drug Deliv. Rev. 2019, 107, 367–392.

    Article  Google Scholar 

  8. Ahmed, J.; Zhang, J.; Song, Z.; Varshney, S. Thermal properties of polylactides: effect of molecular mass and nature of lactide isomer. Therm. Anal. Calorim. 2009, 95, 957–964.

    Article  CAS  Google Scholar 

  9. Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 2009, 4, 259–264.

    Article  Google Scholar 

  10. Wang, C.; Smith, L.; Zhang, W.; Li, M.; Wang, G.; Shi, S.; Cheng, H.; Zhang, S. Reinforcement of polylactic acid for fused deposition modeling process with nano particles treated bamboo powder. Polymers 2019, 11, 1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bouzouita, A. Elaboration of polylactide-based materials for automotive application: study of structure-process-properties interactions, Doctoral dissertation, Université de Valenciennes et du Hainaut-Cambresis; Université de Mons), 2016.

  12. Auras, R.; Bruce, H.; Susan, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864.

    Article  CAS  PubMed  Google Scholar 

  13. Avinc, O.; Akbar, K. Overview of poly (lactic acid) (PLA) fibre: Part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chem. 2009, 41, 391–401.

    Article  CAS  Google Scholar 

  14. Bourbigot, S.; Gaëlle, F. Flame retardancy of polylactide: an overview. Polym. Chem. 2010, 1, 1413–1422.

    Article  CAS  Google Scholar 

  15. Atiwesh, G.; Mikhael, A.; Parrish, C.; Banoub, J.; Le, T. Environmental impact of bioplastic use: a review. Heiiyon 2021, 7, e07918.

    CAS  Google Scholar 

  16. Bergström, J.; Hayman, D. An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann. Biomed. Eng. 2016, 44, 330–340.

    Article  PubMed  Google Scholar 

  17. Kozera, R.; Przybyszewski, B.; Krawczyk, Z.; Boczkowska, A.; Sztorch, B.; Przekop, R.; Barbucha, R.; Tański, M.; Garcia-Casas, X.; Borras, A. A. Hydrophobic and anti-icing behavior of UV-laser-treated polyester resin-based gelcoats. Processes 2020, 8, 1642.

    Article  CAS  Google Scholar 

  18. Mituta, K.; Duszczak, J.; Rzonsowska, M.; Żak, P.; Dudziec, B. Polysiloxanes grafted with mono(alkenyl)silsesquioxanes—particular concept for their connection. Materials 2020, 13, 4784.

    Article  ADS  Google Scholar 

  19. Januszewski, R.; Kownacki, I.; Maciejewski, H.; Marciniec, B. Transition metal-catalyzed hydrosilylation of polybutadiene—the effect of substituents at silicon on efficiency of silylfunctionalization process. J. Catal. 2019, 371, 27–34.

    Article  CAS  Google Scholar 

  20. Brząkalski, D.; Przekop, R.; Sztorch, B.; Jakubowska, P.; Jałbrzykowski, M.; Marciniec, B. Silsesquioxane derivatives as functional additives for preparation of polyethylene-based composites: a case of trisilanol melt-condensation. Polymers 2020, 12, 2269.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sirin, H.; Kodal, M.; Ozkoc, G. The influence of POSS type on the properties of PLA. Polym. Compos. 2014, 37, 497–1506.

    Google Scholar 

  22. Chen, Y.; Liu, S.; Zhou, Y.; Zeng, G.; Liu, W. Biodegradable PLA-based composites modified by POSS particles. Polym. Plast. Tech. Mat. 2020, 59, 998–1009.

    CAS  Google Scholar 

  23. Yazdaninia, A.; Khonakdar, H.; Jafari, S.; Asadi, V. Influence of trifluoropropyl-POSS nanoparticles on the microstructure, rheological, thermal and thermomechanical properties of PLA. RSC Adv. 2016, 6, 37149–37159.

    Article  ADS  CAS  Google Scholar 

  24. Herc, A.; Lewiński, P.; Kaźmierski, S.; Bojda, J.; Kowalewska, A. Hybrid SC-polylactide/poly(silsesquioxane) blends of improved thermal stability. Thermochim. Acta 2020, 178592.

  25. Sztorch, B.; Brząkalski, D.; Gtowacka, J.; Pakuta, D.; Frydrych, M.; Przekop, R. Trimming flow, plasticity, and mechanical properties by cubic silsesquioxane chemistry. Sci. Rep. 2023, 13, 14156.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brząkalski, D.; Sztorch, B.; Frydrych, M.; Pakuła, D.; Dydek, K.; Kozera, R.; Boczkowska, A.; Marciniec, B.; Przekop, R. Limonene derivative of spherosilicate as a polylactide modifier for lions in 3D printing technology. Molecules 2020, 25, 5882.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pakuła, D.; Przekop, R.; Brząkalski, D.; Frydrych, M.; Sztorch, B.; Marciniec, B. Sulfur-containing silsesquioxane derivatives obtained by the thiol-ene reaction: synthesis and thermal degradation. ChemPlusChem 2022, 87, e202200099.

    Article  PubMed  Google Scholar 

  28. Benedetti, A.; Fagherazzi, G.; Enzo S.; Battagliarin, M. A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. II. Application and discussion of the methodology. J. Appl. Crystallogr. 1988, 21, 543–549.

    Article  ADS  Google Scholar 

  29. Jian, Z.; Hejing, W. The physical meanings of 5 basic parameters for an X-ray diffraction peak and their application. Chin. J. Geochem. 2003, 22, 38–44.

    Article  Google Scholar 

  30. Sun, Z.; Wang, L.; Zhou, J.; Fan, X.; Xie, H.; Zhang, H.; Zhang, G.; Shi, X. Influence of polylactide (PLA) stereocomplexation on the microstructure of pla/pbs blends and the cell morphology of their microcellular foams. Polymers 2020, 12, 2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Safandowska, M.; Rozanski, A. Ring-banded spherulites in polylactide and its blends. Polym. Test. 2021, 100, 107230.

    Article  CAS  Google Scholar 

  32. Kovalcik, A.; Pérez-Camargo, R.; Fürst, C.; Kucharczyk, P.; Müller, A. Nucleating efficiency and thermal stability of industrial non-purified lignins and ultrafine talc in poly(lactic acid)(PLA). Polym. Degrad. Stabil. 2017, 142, 244–254.

    Article  CAS  Google Scholar 

  33. Wang, R.; Wang, S.; Zhang, Y. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J. Appl. Polym. Sci. 2009, 113, 3095–3102.

    Article  CAS  Google Scholar 

  34. Liu, Z.; Hu, D.; Huang, L.; Li, W.; Tian, J.; Lu, L.; Zhou, C. Simultaneous improvement in toughness, strength and biocompatibility of poly(lactic acid) with polyhedral oligomeric silsesquioxane. J. Chem. Eng. 2018, 346, 649–661.

    Article  CAS  Google Scholar 

  35. Cao, X.; Mohamed, A.; Gordon, S.; Willett, J.; Sessa, D. DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends. Thermochim. Acta 2003, 406(1–2), 115–127.

    Article  CAS  Google Scholar 

  36. Alamri, H.; El-Hadi, A.; Al-Qahtani, S.; Assaedi, H.; Alotaibi, A. Role of lubricant with a plasticizer to change the glass transition temperature as a result improving the mechanical properties of poly(lactic acid) PLLA. Mater. Res. Express 2020, 7, 025306.

    Article  ADS  CAS  Google Scholar 

  37. Li, D.; Jiang, Y.; Lv, S.; Liu, X.; Gu, J.; Chen, Q.; Zhang, Y. Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One 2018, 1, 0193520.

    Google Scholar 

  38. Przekop, R.; Gabriel, E.; Pakuta, D.; Sztorch, B. Liquid for fused deposition modeling technique (L-FDM)—a revolution in application chemicals to 3D printing technology: color and elements. Appl. Sci. 2023, 13, 7393.

    Article  CAS  Google Scholar 

  39. Herc, A.; Bojda, J.; Nowacka, M.; Lewiański, P.; Maniukiewicz, W.; Piorkowska, E.; Kowalewska, A. Crystallization, structure and properties of polylactide/ladder poly(silsesquioxane) blends. Polymer 2020, 201, 122563.

    Article  CAS  Google Scholar 

  40. Wang, L.; Gramlich, W. M.; Gardner, D. J. Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer 2017, 114, 242–248.

    Article  CAS  Google Scholar 

  41. Yang, G.; Su, J.; Su, R.; Zhang, Q.; Fu, Q.; Na, B. Toughening of poly(l-lactic acid) by annealing: the effect of crystal morphologies and modifications. J. Macrol. Sci. B 2011, 51, 184–196.

    Article  Google Scholar 

  42. Sirin, H.; Kodal, M.; Ozkoc, G. The influence of POSS type on the properties of PLA. Polym. Compos. 2014, 37, 1497–1506.

    Article  Google Scholar 

  43. Evans, A. The strength of brittle materials containing second phase dispersions. Phil. Mag. 1972, 26, 1327–1344.

    Article  ADS  CAS  Google Scholar 

  44. Safandowska, M.; Rozanski, A.; Galeski, A. Plasticization of polylactide after solidification: an effectiveness and utilization for correct interpretation of thermal properties. Polymers 2020, 12, 561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng, X.; Nguyen, N. A.; Tekinalp, H.; Lara-Curzio, E.; Ozcan, S. Supertough PLA-silane nanohybrids by in situ condensation and grafting. ACS Sustain. Chem. Eng. 2017, 6, 1289–1298.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Smart Growth Operational Programme (No. POIR.04.02.00-00-D003/20-00); European Funds (No. RPWP.01.01.00-30-0004/18) and Ministry of Science and Higher Education (No. 21/529535/SPUB/SP/2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bogdan Marciniec or Robert E. Przekop.

Ethics declarations

The authors declare no interest conflict.

Additional information

Patents

The results of this publication have been patented with Polish patent application no. P.446764, 17.11.2023r.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakuła, D., Sztorch, B., Romańczuk-Ruszuk, E. et al. High Impact Polylactide Based on Organosilicon Nucleation Agent. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3095-7

Keywords

Navigation