Skip to main content
Log in

Organic Brønsted Acid-Catalyzed Stereoselective Cationic RAFT Polymerization: The Effect of RAFT Agents

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The tacticity of vinyl polymers is a key factor affecting the properties of materials. Recently, organic Brønsted acids have been demonstrated as effective catalysts for the development of highly stereoselective cationic reversible addition-fragmentation chain transfer (RAFT) polymerizations of vinyl ethers, in which the use of RAFT agents could allow the control the molecular weight and tacticity of polymer products simultaneously. However, the effect of RAFT agents on the tacticity-regulation remains elusive and lacks of investigation. In this study, we synthesized four types of RAFT agents and evaluated their influence in the stereoselective cationic polymerization of isobutyl vinyl ether in the presence of PADI as a Brønsted acid catalyst, which unveils that the Z group of RAFT agents could not only affect the polydispersity of the products, but also exert a profound effect on the stereoselectivity. After extensive screening of the RAFT agents, high stereoregularity (isotacticity, 90% m) was obtained when using dithiocarbonate ester-type RAFT agents with a benzyloxy Z group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 2000, 100, 1223–1252.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 2009, 109, 5157–5214.

    Article  CAS  PubMed  Google Scholar 

  3. Satoh, K.; Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev. 2009, 109, 5120–5156.

    Article  CAS  PubMed  Google Scholar 

  4. Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 2019, 3, 514–535.

    Article  CAS  Google Scholar 

  5. Fishbein, L.; Crowe, B. F. The relation of structure to some physical and mechanical properties of poly(vinyl alkyl ethers). Die Makromolekulare Chemie 1961, 48, 221–228.

    Article  CAS  Google Scholar 

  6. Teator, A. J.; Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 2019, 363, 1439–1443.

    Article  CAS  PubMed  Google Scholar 

  7. Teator, A. J.; Varner, T. P.; Knutson, P. C.; Sorensen, C. C.; Leibfarth, F. A. 100th Anniversary of macromolecular science viewpoint: the past, present, and future of stereocontrolled vinyl polymerization. ACS Macro Lett. 2020, 9, 1638–1654.

    Article  CAS  PubMed  Google Scholar 

  8. Aoshima, S.; Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 2009, 109, 5245–5287.

    Article  CAS  PubMed  Google Scholar 

  9. Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 1991, 16, 111–172.

    Article  CAS  Google Scholar 

  10. Aoshima, S.; Ito, Y.; Kobayashi, E. Stereoregularity of poly(vinyl ether)s with a narrow molecular weight distribution obtained by the living cationic polymerization. Polym. J. 1993, 25, 1161–1168.

    Article  CAS  Google Scholar 

  11. Kamigaito, M.; Maeda, Y.; Sawamoto, M.; Higashimura, T. Living cationic polymerization of isobutyl vinyl ether by hydrogen chloride/Lewis acid initiating systems in the presence of salts: in-situ direct NMR analysis of the growing species. Macromolecules 1993, 23, 1643–1649.

    Article  Google Scholar 

  12. Ouchi, M.; Kamigaito, M.; Sawamoto, M. Stereoregulation in cationic polymerization by designed lewis acids. 1. Highly isotactic poly(isobutyl vinyl ether) with titanium-based Lewis acids. Macromolecules 1999, 32, 6407–6411.

    Article  CAS  Google Scholar 

  13. Ouchi, M.; Kamigaito, M.; Sawamoto, M. Stereoregulation in cationic polymerization by designed Lewis acids. II. Effects of alkyl vinyl ether structure. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1060–1066.

    Article  CAS  Google Scholar 

  14. Ouchi, M.; Sueoka, M.; Kamigaito, M.; Sawamoto, M. Stereoregulation in cationic polymerization. III. High isospecificity with the bulky phosphoric acid [(RO)2PO2H]/SnCl4 initiating systems: design of counteranions via initiators. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1067–1074.

    Article  CAS  Google Scholar 

  15. Kawaguchi, T.; Sanda, F.; Masuda, T. Polymerization of vinyl ethers with transition-metal catalysts: an examination of the stereoregularity of the formed polymers. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3938–3943.

    Article  CAS  Google Scholar 

  16. Sudhakar, P.; Vijayakrishna, K. Highly stereoselective living polymerization of vinyl ethers at ambient temperature mediated by chiral titanium complexes. ChemCatChem 2010, 2, 649–652.

    Article  CAS  Google Scholar 

  17. Kanazawa, A.; Kanaoka, S.; Aoshima, S. A stepping stone to stereospecific living cationic polymerization: cationic polymerization of vinyl ethers using iron(II) sulfate. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3702–3708.

    Article  CAS  Google Scholar 

  18. Teator, A. J.; Varner, T. P.; Jacky, P. E.; Sheyko, K. A.; Leibfarth, F. A. Polar thermoplastics with tunable physical properties enabled by the stereoselective copolymerization of vinyl ethers. ACS Macro Lett. 2019, 8, 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe, H.; Yamamoto, T.; Kanazawa, A.; Aoshima, S. Stereoselective cationic polymerization of vinyl ethers by easily and finely tunable titanium complexes prepared from tartrate-derived diols: isospecific polymerization and recognition of chiral side chains. Polym. Chem. 2020, 11, 3398–3403.

    Article  CAS  Google Scholar 

  20. Varner, T. P.; Teator, A. J.; Reddi, Y.; Jacky, P. E.; Cramer, C. J.; Leibfarth, F. A. Mechanistic insight into the stereoselective cationic polymerization of vinyl ethers. J. Am. Chem. Soc. 2020, 142, 17175–17186.

    Article  CAS  PubMed  Google Scholar 

  21. Uchiyama, M.; Satoh, K.; Kamigaito, M. Stereospecific cationic RAFT polymerization of bulky vinyl ethers and stereoblock poly(vinyl alcohol) via mechanistic transformation to radical RAFT polymerization of vinyl acetate. Giant 2021, 5, 100047.

    Article  CAS  Google Scholar 

  22. Liao, D.; Pang, W.; Bashir, M. S.; Chen, C. A continuous flow-through strategy to produce highly isotactic poly(isobutyl vinyl ether) via cationic polymerization. Polym. Chem. 2022, 13, 5068–5072.

    Article  CAS  Google Scholar 

  23. Yang, Z.; Zhang, X.; Jiang, Y.; Ma, Q.; Liao, S. Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined Brønsted acid as the catalyst. Sci. China Chem. 2022, 65, 304–308.

    Article  CAS  Google Scholar 

  24. Knutson, P. C.; Teator, A. J.; Varner, T. P.; Kozuszek, C. T.; Jacky, P. E.; Leibfarth, F. A. Brønsted acid catalyzed stereoselective polymerization of vinyl ethers. J. Am. Chem. Soc. 2021, 143, 16388–16393.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X.; Yang, Z.; Jiang, Y.; Liao, S. Organocatalytic, stereoselective, cationic reversible addition-fragmentation chain-transfer polymerization of vinyl ethers. J. Am. Chem. Soc. 2022, 144, 679–684.

    Article  CAS  PubMed  Google Scholar 

  26. Li, M.; Zhang, Z.; Yan, Y.; Lv, W.; Li, Z.; Wang, X.; Tao, Y. Anion-binding catalysis enables living cationic polymerization. Nat. Synth. 2022, 1, 815–823.

    Article  Google Scholar 

  27. Li, M.; Li, H.; Zhang, X.; Wang, X.; Tao, Y. Mechanistic insight into anion-binding catalytic living cationic polymerization. Angew. Chem. Int. Ed. 2023, 62, e202303237.

    Article  CAS  Google Scholar 

  28. Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 2015, 54, 1924–1928.

    Article  CAS  Google Scholar 

  29. Sugihara, S.; Konegawa, N.; Maeda, Y. HCI·Et2O-catalyzed metalfree RAFT cationic polymerization: one-pot transformation from metal-free living cationic polymerization to RAFT radical polymerization 1. Macromolecules 2015, 48, 5120–5131.

    Article  CAS  Google Scholar 

  30. Song, J.; Xu, J.; Tang, D. Rapid living cationic polymerization of vinyl ethers by a single-molecular initiating system. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1373–1377.

    Article  CAS  Google Scholar 

  31. Kottisch, V.; Jermaks, J.; Mak, J. Y.; Woltornist, R. A.; Lambert, T. H.; Fors, B. P. Hydrogen bond donor catalyzed cationic polymerization of vinyl ethers. Angew. Chem. Int. Ed. 2021, 60, 4535–4539.

    Article  CAS  Google Scholar 

  32. Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT and DT polymerization. Prog. Polym. Sci. 2022, 124, 101485.

    Article  CAS  Google Scholar 

  33. Uchiyama, M.; Satoh, K.; Kamigaito, M. Diversifying cationic RAFT polymerization with various counteranions: generation of cationic species from organic halides and various metal salts. ACS Macro Lett. 2016, 5, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  34. Uchiyama, M.; Satoh, K.; Kamigaito, M. Thioether-mediated degenerative chain-transfer cationic polymerization: a simple metal-free system for living cationic polymerization. Macromolecules 2015, 48, 5533–5542.

    Article  CAS  Google Scholar 

  35. Michaudel, Q.; Chauviré, T.; Kottisch, V.; Supej, M. J.; Stawiasz, K. J.; Shen, L.; Zipfel, W. R.; Abruña, H. D.; Freed, J. H.; Fors, B. P. Mechanistic insight into the photocontrolled cationic polymerization of vinyl ethers. J. Am. Chem. Soc. 2017, 139, 15530–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Recruitment Program of Global Experts of China, the National Natural Science Foundation of China (Nos. 21602028 and 22371240), Beijing National Laboratory for Molecular Sciences (No. BNLMS201913), 100-Talent program of Fujian, Fuzhou University and Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Hu Liao.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Yang, Z., Liao, Y. et al. Organic Brønsted Acid-Catalyzed Stereoselective Cationic RAFT Polymerization: The Effect of RAFT Agents. Chin J Polym Sci 42, 711–717 (2024). https://doi.org/10.1007/s10118-024-3085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3085-9

Keywords

Navigation