Skip to main content
Log in

Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brønsted acid as the catalyst

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The properties of poly(vinyl ether)s (PVEs) are highly dependent on their tacticity, and the appealing thermoplastics features of isotactic PVEs have drawn considerable efforts to develop stereoselective cationic polymerization methods to access this class of polymers. However, reported methods that could achieve a high degree of tacticity control are limited to process employing metal-based Lewis acids, and with various limitations on catalyst loading, monomer scope, etc. Here, we introduce a metal-free stereoselective cationic polymerization of vinyl ethers by employing a class of chiral confined Brønsted acids, imidodiphosphorimidates (IDPis), as the catalyst. This organocatalytic approach features its metal free conditions, high efficiency, high stereoselectivity, single catalyst system, operation simplicity, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Nat Rev Chem, 2019, 3: 514–535

    Article  CAS  Google Scholar 

  2. Busico V. Giulio Natta and the Development of Stereoselective Propene Polymerization. In: Kaminsky W, Eds. Polyolefins: 50 years after Ziegler and Natta I. Advances in Polymer Science, Vol 257. Berlin, Heidelberg: Springer, 2013. 37–58

    Chapter  Google Scholar 

  3. de Derosa C, Auriemma F. Prog Polym Sci, 2006, 31: 145–237

    Article  Google Scholar 

  4. Fishbein L, Crowe BF. Makromol Chem, 1961, 48: 221–228

    Article  CAS  Google Scholar 

  5. Teator AJ, Leibfarth FA. Science, 2019, 363: 1439–1443

    Article  CAS  PubMed  Google Scholar 

  6. Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA. ACS Macro Lett, 2020, 9: 1638–1654

    Article  CAS  Google Scholar 

  7. Aoshima S, Kanaoka S. Chem Rev, 2009, 109: 5245–5287

    Article  CAS  PubMed  Google Scholar 

  8. Sawamoto M. Prog Polym Sci, 1991, 16: 111–172

    Article  CAS  Google Scholar 

  9. Coates GW. Chem Rev, 2000, 100: 1223–1252

    Article  CAS  PubMed  Google Scholar 

  10. Chen EYX. Chem Rev, 2009, 109: 5157–5214

    Article  CAS  PubMed  Google Scholar 

  11. Wang XY, Sun XL, Wang F, Tang Y. ACS Catal, 2017, 7: 4692–4696

    Article  CAS  Google Scholar 

  12. Aoshima S, Ito Y, Kobayashi E. Polym J, 1993, 25: 1161–1168

    Article  CAS  Google Scholar 

  13. Kamigaito M, Maeda Y, Sawamoto M, Higashimura T. Macromolecules, 1993, 26: 1643–1649

    Article  CAS  Google Scholar 

  14. Ouchi M, Kamigaito M, Sawamoto M. Macromolecules, 1999, 32: 6407–6411

    Article  CAS  Google Scholar 

  15. Ouchi M, Kamigaito M, Sawamoto M. J Polym Sci Polym Chem, 2001, 39: 1060–1066

    Article  CAS  Google Scholar 

  16. Ouchi M, Sueoka M, Kamigaito M, Sawamoto M. J Polym Sci Polym Chem, 2001, 39: 1067–1074

    Article  CAS  Google Scholar 

  17. Kawaguchi T, Sanda F, Masuda T. J Polym Sci Polym Chem, 2002, 40: 3938–3943

    Article  CAS  Google Scholar 

  18. Sudhakar P, Vijayakrishna K. ChemCatChem, 2010, 2: 649–652

    Article  CAS  Google Scholar 

  19. Kanazawa A, Kanaoka S, Aoshima S. J Polym Sci Polym Chem, 2010, 48: 3702–3708

    Article  CAS  Google Scholar 

  20. Teator AJ, Varner TP, Jacky PE, Sheyko KA, Leibfarth FA. ACS Macro Lett, 2019, 8: 1559–1563

    Article  CAS  Google Scholar 

  21. Watanabe H, Yamamoto T, Kanazawa A, Aoshima S. Polym Chem, 2020, 11: 3398–3403

    Article  CAS  Google Scholar 

  22. Varner TP, Teator AJ, Reddi Y, Jacky PE, Cramer CJ, Leibfarth FA. J Am Chem Soc, 2020, 142: 17175–17186

    Article  CAS  PubMed  Google Scholar 

  23. Uchiyama M, Satoh K, Kamigaito M. Giant, 2021, 5: 100047

    Article  CAS  Google Scholar 

  24. Shanmugam S, Boyer C. Science, 2016, 352: 1053–1054

    Article  CAS  PubMed  Google Scholar 

  25. Albertsson AC, Varma IK. Biomacromolecules, 2003, 4: 1466–1486

    Article  CAS  PubMed  Google Scholar 

  26. Sugihara S, Tanabe Y, Kitagawa M, Ikeda I. J Polym Sci Polym Chem, 2008, 46: 1913–1918

    Article  CAS  Google Scholar 

  27. Uchiyama M, Satoh K, Kamigaito M. Angew Chem Int Ed, 2015, 54: 1924–1928

    Article  CAS  Google Scholar 

  28. Sugihara S, Konegawa N, Maeda Y. Macromolecules, 2015, 48: 5120–5131

    Article  CAS  Google Scholar 

  29. Song J, Xu J, Tang D. J Polym Sci Part A-Polym Chem, 2016, 54: 1373–1377

    Article  CAS  Google Scholar 

  30. Kottisch V, Jermaks J, Mak JY, Woltornist RA, Lambert TH, Fors BP. Angew Chem Int Ed, 2021, 60: 4535–4539

    Article  CAS  Google Scholar 

  31. Liao S, Čorić I, Wang Q, List B. J Am Chem Soc, 2012, 134: 10765–10768

    Article  CAS  PubMed  Google Scholar 

  32. Schreyer L, Properzi R, List B. Angew Chem Int Ed, 2019, 58: 12761–12777

    Article  CAS  Google Scholar 

  33. Čorić I, List B. Nature, 2012, 483: 315–319

    Article  PubMed  Google Scholar 

  34. Kaib PSJ, Schreyer L, Lee S, Properzi R, List B. Angew Chem Int Ed, 2016, 55: 13200–13203

    Article  CAS  Google Scholar 

  35. Xie Y, Cheng GJ, Lee S, Kaib PSJ, Thiel W, List B. J Am Chem Soc, 2016, 138: 14538–14541

    Article  CAS  PubMed  Google Scholar 

  36. Liu L, Kim H, Xie Y, Farès C, Kaib PSJ, Goddard R, List B. J Am Chem Soc, 2017, 139: 13656–13659

    Article  CAS  PubMed  Google Scholar 

  37. Lee S, Kaib PSJ, List B. J Am Chem Soc, 2017, 139: 2156–2159

    Article  CAS  PubMed  Google Scholar 

  38. Schreyer L, Kaib PSJ, Wakchaure VN, Obradors C, Properzi R, Lee S, List B. Science, 2018, 362: 216–219

    Article  CAS  PubMed  Google Scholar 

  39. Tsuji N, Kennemur JL, Buyck T, Lee S, Prévost S, Kaib PSJ, Bykov D, Farès C, List B. Science, 2018, 359: 1501–1505

    Article  CAS  PubMed  Google Scholar 

  40. Ouyang J, Kennemur JL, De CK, Farès C, List B. J Am Chem Soc, 2019, 141: 3414–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghosh S, Das S, De CK, Yepes D, Neese F, Bistoni G, Leutzsch M, List B. Angew Chem Int Ed, 2020, 59: 12347–12351

    Article  CAS  Google Scholar 

  42. Zhang X, Jiang Y, Ma Q, Hu S, Wang Q, Liao S. Eur Polym J, 2020, 123: 109449

    Article  CAS  Google Scholar 

  43. Mitschke B, Turberg M, List B. Chem, 2020, 6: 2515–2532

    Article  CAS  Google Scholar 

  44. Schwengers SA, De CK, Grossmann O, Grimm JAA, Sadlowski NR, Gerosa GG, List B. J Am Chem Soc, 2021, 143: 14835–14844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahlau M, List B. Angew Chem Int Ed, 2013, 52: 518–533

    Article  CAS  Google Scholar 

  46. Brak K, Jacobsen EN. Angew Chem Int Ed, 2013, 52: 534–561

    Article  CAS  Google Scholar 

  47. Phipps RJ, Hamilton GL, Toste FD. Nat Chem, 2012, 4: 603–614

    Article  CAS  PubMed  Google Scholar 

  48. Liao S, List B. Angew Chem Int Ed, 2010, 49: 628–631

    Article  CAS  Google Scholar 

  49. Merten C, Pollok CH, Liao S, List B. Angew Chem Int Ed, 2015, 54: 8841–8845

    Article  CAS  Google Scholar 

  50. A patent (CN 202110033389.X) has been filed on this stereoselective polymerization method employing chiral confined Brønsted acids as the catalyst on 2021-01-12. This manuscript was first published as a preprint on ChemRxiv (Cambridge: Cambridge Open Engage, 2021), doi: https://doi.org/10.33774/chemrxiv-2021-qlpbp on 2021-10-04

  51. For a similar work concurrently published on 2021-10-01, see: Knutson PC, Teator AJ, Varner TP, Kozuszek CT, Jacky PE, Leibfarth FA. J Am Chem Soc, 2021, 143: 16388–16393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Recruitment Program of Global Experts, Beijing National Laboratory for Molecular Sciences (BNLMS201913), and Fuzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saihu Liao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1143_MOESM1_ESM.pdf

Organocatalytic Stereoselective Cationic Polymerization of Vinyl Ethers by Employing a Confined Brønsted Acid as the Catalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, X., Jiang, Y. et al. Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brønsted acid as the catalyst. Sci. China Chem. 65, 304–308 (2022). https://doi.org/10.1007/s11426-021-1143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1143-x

Navigation