Skip to main content

Advertisement

Log in

Tough Semi-interpenetrating Polyvinylpyrrolidone/Polyacrylamide Hydrogels Enabled by Bioinspired Hydrogen-bonding Induced Phase Separation

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Semi-interpenetrating (semi-IPN) hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields. However, the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications. Herein, a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels (named PVP/PAM hydrogels), including the linear polymer polyvinylpyrrolidone (PVP) and cross-linked polyacrylamide (PAM) network. The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP. Meanwhile, the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%, tensile strength of 0.28 MPa and toughness of 2.17 MJ/m3. More importantly, the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces, so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications. It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, X.; Liu, Z.; Zhang, B.; Tang, X.; Fan, F.; Fu, Y.; Zhang, J.; Wang, T.; Meng, F. J. Sponge-like, semi-interpenetrating self-sensory hydrogel for smart photothermal-responsive soft actuator with biomimetic self-diagnostic intelligence. Chem. Eng. J. 2023, 467, 143515.

    Article  CAS  Google Scholar 

  2. Yang, M.; Chen, P.; Qu, X.; Zhang, F.; Ning, S.; Ma, L.; Yang, K.; Su, Y.; Zang, J.; Jiang, W.; Yu, T.; Dong, X.; Luo, Z. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable chronic neuromodulation. ACS Nano 2023, 17, 885–895.

    Article  CAS  Google Scholar 

  3. Samanta, H. S.; Ray, S. K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohyd. Polym. 2014, 99, 666–678.

    Article  CAS  Google Scholar 

  4. Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T. I. Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohyd. Polym. 2014, 102, 159–166.

    Article  CAS  Google Scholar 

  5. Dai, Z.; Yang, X.; Wu, F.; Wang, L.; Xiang, K.; Li, P.; Lv, Q.; Tang, J.; Dohlman, A.; Dai, L.; Shen, X.; You, L. Living fabrication of functional semi-interpenetrating polymeric materials. Nat. Commun. 2021, 12, 3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, X.; Li, S.; Shao, L. Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energ. Environ. Sci. 2017, 10, 1339–1344.

    Article  CAS  Google Scholar 

  7. Wang, M.; Nie, C.; Liu, J.; Wu, S. Cgannic-inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat. Commun. 2023, 14, 1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wahid, F.; Hu, X. H.; Chu, L. Q.; Jia, S. R.; Xie, Y. Y.; Zhong, C. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int. J. Biol. Macromol. 2019, 122, 380–387.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, B.; Ma, D.; Wang, J.; Zhang, S. Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohyd. Polym. 2015, 133, 448–455.

    Article  CAS  Google Scholar 

  10. Sampath, U. G. T. M.; Ching, Y. C.; Chuah, C. H.; Singh, R.; Lin, P. C. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 2017, 24, 2215–2228.

    Article  CAS  Google Scholar 

  11. Chan, B. K.; Wippich, C. C.; Wu, C. J.; Sivasankar, P. M.; Schmidt, G. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol. Biosci. 2012, 12, 1490–1501.

    Article  CAS  PubMed  Google Scholar 

  12. Xing, L.; Song, Y.; Zou, X.; Tan, H.; Yan, J.; Wang, J. A mussel-inspired semi-interpenetrating structure hydrogel with superior stretchability, self-adhesive properties, and pH sensitivity for smart wearable electronics. J. Mater. Chem. C 2033, 11, 13376–13386.

    Article  Google Scholar 

  13. Olad, A.; Pourkhiyabi, M.; Gharekhani, H.; Doustdar, F. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics. Carbohyd. Polym. 2018, 190, 295–306.

    Article  CAS  Google Scholar 

  14. Rokhade, A. P.; Patil, S. A.; Aminabhavi, T. M. Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohyd. Polym. 2007, 67, 605–613.

    Article  CAS  Google Scholar 

  15. Zhu, T.; Cheng, Y.; Cao, C.; Mao, J.; Li, L.; Huang, J.; Gao, S.; Dong, X.; Chen, Z.; Lai, Y. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 2020, 385, 123912.

    Article  CAS  Google Scholar 

  16. Zhang, G.; Chen, Y.; Deng, Y.; Ngai, T.; Wang, C. Dynamic supramolecular hydrogels: regulating hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch. ACS Macro Lett. 2017, 6, 641–646.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Y.; Wang, X.; Yang, F.; Wang, L.; Wu, D. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, 1707071.

    Article  Google Scholar 

  18. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.

    Article  CAS  Google Scholar 

  19. Mihajlovic, M.; Staropoli, M.; Appavou, M.-S.; Wyss, H. M.; Pyckhout-Hintzen, W.; Sijbesma, R. P. Tough Supramolecular hydrogel based on strong hydrophobic interactions in a multiblock segmented copolymer. Macromolecules 2017, 50, 3333–3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717–3736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huo, P.; Ding, H.; Tang, Z.; Liang, X.; Xu, J.; Wang, M.; Liang, R.; Sun, G. Conductive silk fibroin hydrogel with semi-interpenetrating network with high toughness and fast self-recovery for strain sensors. Int. J. Biol. Macromol. 2022, 212, 1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, A.; Wang, Y.; Zhang, B.; Wan, K.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chem. Eng. J. 2021, 411.

  23. Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.

    Article  CAS  PubMed  Google Scholar 

  24. Yao, M.; Wei, Z.; Li, J.; Guo, Z.; Yan, Z.; Sun, X.; Yu, Q.; Wu, X.; Yu, C.; Yao, F.; Feng, S.; Zhang, H.; Li, J. Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices. Nat. Commun. 2022, 13, 5339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L.; Yan, H.; Zhou, J.; Zhao, Z.; Huang, J.; Chen, L.; Ru, Y.; Liu, M. High- performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater. 2023, 35, 2202193.

    Article  CAS  Google Scholar 

  26. Liang, X.; Chen, G.; Lei, I. M.; Zhang, P.; Wang, Z.; Chen, X.; Lu, M.; Zhang, J.; Wang, Z.; Sun, T.; Lan, Y.; Liu, J. Impact-resistant hydrogels by harnessing 2D hierarchical structures. Adv. Mater. 2022, 35, 2207587.

    Article  Google Scholar 

  27. Mastrangelo, R.; Chelazzi, D.; Poggi, G.; Fratini, E.; Pensabene Buemi, L.; Petruzzellis, M. L.; Baglioni, P. Twin-chain polymer hydrogels based on poly(vinyl alcohol) as new advanced tool for the cleaning of modern and contemporary art. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 7011–7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, G.; Xu, S.; Zhou, Q.; Zhang, Y.; Song, Y.; Mi, J.; Liu, Y.; Hou, K.; Pan, J. Temperature-gated light-guiding hydrogel fiber for thermoregulation during optogenetic neuromodulation. Adv. Fiber Mater. 2023, 5, 968–978.

    Article  Google Scholar 

  29. Flory, P. J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–111.

    Article  CAS  Google Scholar 

  30. Yuan, Z.; Cao, Z.; Ma, C.; Wu, R.; Wu, H.; Xu, Q.; Zheng, J.; Wu, J. Ultra-robust, repairable and smart physical hydrogels enabled by nano-domain reconfiguration of network topology. Chem. Eng. J. 2022, 450, 138085.

    Article  CAS  Google Scholar 

  31. Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, H.; Ma, C. S.; Yu, C. Y.; Tong, F.; Qu, D. H. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine B Dyes. ACS Appl. Mater. Interfaces 2023, 15, 25201–25211.

    Article  CAS  PubMed  Google Scholar 

  33. Song, G.; Zhang, L.; He, C.; Fang, D. C.; Whitten, P. G.; Wang, H. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 2013, 46, 7423–7435.

    Article  CAS  Google Scholar 

  34. Wang, Y. J.; Zhang, X. N.; Song, Y.; Zhao, Y.; Chen, L.; Su, F.; Li, L.; Wu, Z. L.; Zheng, Q. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater. 2019, 31, 1430–1440.

    Article  CAS  Google Scholar 

  35. Wang, Y.; Wu, J.; Cao, Z.; Ma, C.; Tong, Q.; Li, J.; Liu, H.; Zheng, J.; Huang, G. Mechanically robust, notch-insensitive, fatigue resistant and self-recoverable hydrogels with homogeneous and viscoelastic network constructed by a novel multifunctional cross-linker. Polymer 2019, 179, 121661.

    Article  CAS  Google Scholar 

  36. Mou, L.; Qi, J.; Tang, L.; Dong, R.; Xia, Y.; Gao, Y.; Jiang, X. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 2020, 16, e2005336.

    Article  PubMed  Google Scholar 

  37. Chen, Q.; Zhu, L.; Zhao, C.; Wang, Q.; Zheng, J. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 2013, 25, 4171–4176.

    Article  CAS  PubMed  Google Scholar 

  38. Erdodi, G.; Kennedy, J. P. Amphiphilic conetworks: definition, synthesis, applications. Prog. Polym. Sci. 2006, 31, 1–18.

    Article  CAS  Google Scholar 

  39. Wang, Y.; Xie, Y.; Xie, X.; Wu, D.; Wu, H.; Luo, X.; Wu, Q.; Zhao, L.; Wu, J. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure. Adv. Funct. Mater. 2023, 33, 2210224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52273210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zheng or Jin-Rong Wu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3066_MOESM1_ESM.pdf

Tough Semi-interpenetrating Polyvinylpyrrolidone/Polyacrylamide Hydrogels Enabled by Bioinspired Hydrogen-bonding Induced Phase Separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QJ., Yuan, ZY., Wang, CC. et al. Tough Semi-interpenetrating Polyvinylpyrrolidone/Polyacrylamide Hydrogels Enabled by Bioinspired Hydrogen-bonding Induced Phase Separation. Chin J Polym Sci 42, 591–603 (2024). https://doi.org/10.1007/s10118-024-3066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3066-z

Keywords

Navigation