Skip to main content
Log in

Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking — The roles of the dual crosslinking points

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A facile method to fabricate tough and highly stretchable polyacrylamide (PAM) nanocomposite physical hydrogel (NCP gel) was proposed. The hydrogels are dually crosslinked single network with the PAM grafted vinyl hybrid silica nanoparticles (VSNPs) as the analogous covalent crosslinking points and the reversible hydrogen bonds among the PAM chains as the physical crosslinking points. In order to further elucidate the toughening mechanism of the PAM NCP gel, especially to understand the role of the dual crosslinking points, the PAM hybrid hydrogels (H gels) and a series of poly(acrylamide-co-dimethylacrylamide) (P(AM-co-DMAA)) NCP gels were designed and fabricated. Their mechanical properties were compared with those of the PAM NCP gels. The PAM H gels are prepared by simply mixing the PAM chains with bare silica nanoparticles (SNPs). Relative to the poor mechanical properties of the PAM H gel, the PAM NCP gel is remarkably tough and stretchable and also generates large number of micro-cracks to stop notch propagation, indicating the important role of PAM grafted VSNPs in toughening the NCP gel. In the P(AM-co-DMAA) NCP gels, the P(AM-co-DMAA) chains are grafted on VSNPs and the polydimethylacrylamide (PDMAA) only forms very weak hydrogen bonds between themselves. It is found that mechanical properties of the PAM NCP gel, such as the tensile strength and the elongation at break, are enhanced significantly, but those of the P(AM-co-DMAA) NCP gels decreased rapidly with decreasing AM content. This result reveals the role of the hydrogen bonds among the grafted polymer chains as the physical crosslinking points in toughening the NCP gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, K.Y. and Mooney, D.J., Chem. Rev., 2001, 101: 1869

    Article  CAS  Google Scholar 

  2. Drury, J.L. and Mooney, D.J., Biomaterials, 2003, 24: 4337

    Article  CAS  Google Scholar 

  3. Liu, Z.S. and Calvert, P., Adv. Mater., 2000, 12: 288

    Article  CAS  Google Scholar 

  4. Bassil, M., Ibrahim, M. and El Tahchi, M., Soft Matter, 2011, 7: 4833

    Article  CAS  Google Scholar 

  5. Saito, J., Furukawa, H., Kurokawa, T., Kuwabara, R., Kuroda, S., Hu, J.A., Tanaka, Y., Gong, J.P., Kitamura, N. and Yasuda, K., Polym. Chem., 2011, 2: 575

    Article  CAS  Google Scholar 

  6. Yasuda, K., Kitamura, N., Gong, J.P., Arakaki, K., Kwon, H.J., Onodera, S., Chen, Y.M., Kurokawa, T., Kanaya, F., Ohmiya, Y. and Osada, Y., Macromol. Biosci., 2009, 9: 307

    Article  CAS  Google Scholar 

  7. Nakajima, T., Takedomi, N., Kurokawa, T., Furukawa, H. and Gong, J.P., Polym. Chem., 2010, 1: 693

    Article  CAS  Google Scholar 

  8. Huang, Y., Zhong, M., Huang, Y., Zhu, M., Pei, Z., Wang, Z., Xue, Q., Xie, X. and Zhi, C., Nat. Commun., 2015, 6: 10310

    Article  CAS  Google Scholar 

  9. Huang, Y., Huang, Y., Zhu, M., Meng, W., Pei, Z., Liu, C., Hu, H. and Zhi, C., ACS Nano, 2015, 9: 6242

    Article  CAS  Google Scholar 

  10. Hoffman, A.S., Adv. Drug Del. Rev., 2012, 64: 18

    Article  Google Scholar 

  11. Haraguchi, K., Takehisa, T. and Fan, S., Macromolecules, 2002, 35: 10162

    Article  CAS  Google Scholar 

  12. Barrett, D.G., Fullenkamp, D.E., He, L.H., Holten-Andersen, N., Lee, K.Y.C. and Messersmith, P.B., Adv. Funct. Mater., 2013, 23: 1111

    Article  CAS  Google Scholar 

  13. Cui, J.X. and del Campo, A., Chem. Commun., 2012, 48: 9302

    Article  CAS  Google Scholar 

  14. Tuncaboylu, D.C., Sari, M., Oppermann, W. and Okay, O., Macromolecules, 2011, 44: 4997

    Article  CAS  Google Scholar 

  15. Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H. and Harada, A., Adv. Mater., 2013, 25: 2849

    Article  CAS  Google Scholar 

  16. Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U.I., Macromolecules, 2008, 41: 5379

    Article  CAS  Google Scholar 

  17. Haraguchi, K. and Takehisa, T., Adv. Mater., 2002, 14: 1120

    Article  CAS  Google Scholar 

  18. Zhao, X.H., Soft Matter, 2014, 10: 672

    Article  CAS  Google Scholar 

  19. Sakai, T., Akagi, Y., Matsunaga, T., Kurakazu, M., Chung, U. and Shibayama, M., Macromol. Rapid Commun., 2010, 31: 1954

    Article  CAS  Google Scholar 

  20. Okumura, Y. and Ito, K., Adv. Mater., 2001, 13: 485

    Article  CAS  Google Scholar 

  21. Ito, K., Polym. J., 2007, 39: 489

    Article  CAS  Google Scholar 

  22. Malkoch, M., Vestberg, R., Gupta, N., Mespouille, L., Dubois, P., Mason, A.F., Hedrick, J.L., Liao, Q., Frank, C.W., Kingsbury, K. and Hawker, C.J., Chem. Commun., 2006, 2774

    Google Scholar 

  23. Lin, P., Ma, S.H., Wang, X.L. and Zhou, F., Adv. Mater., 2015, 27: 2054

    Article  CAS  Google Scholar 

  24. Gong, J.P., Soft Matter, 2010, 6: 2583

    Article  CAS  Google Scholar 

  25. Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y., Adv. Mater., 2003, 15: 1155

    Article  CAS  Google Scholar 

  26. Tsukeshiba, H., Huang, M., Na, Y.H., Kurokawa, T., Kuwabara, R., Tanaka, Y., Furukawa, H., Osada, Y. and Gong, J.P., J. Phys. Chem. B, 2005, 109: 16304

    Article  CAS  Google Scholar 

  27. Song, G.S., Zhang, L., He, C.C., Fang, D.C., Whitten, P.G. and Wang, H.L., Macromolecules, 2013, 46: 7423

    Article  CAS  Google Scholar 

  28. Sun, T.L., Kurokawa, T., Kuroda, S., Bin Ihsan, A., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T. and Gong, J.P., Nat. Mater., 2013, 12: 932

    Article  CAS  Google Scholar 

  29. Hu, X., Vatankhah-Varnoosfaderani, M., Zhou, J., Li, Q. and Sheiko, S.S., Adv. Mater., 2015, 27: 6899

    Article  CAS  Google Scholar 

  30. Yang, J., Wang, X.P. and Xie, X.M., Soft Matter, 2012, 8: 12133

    Google Scholar 

  31. Yang, J., Shi, F.K., Gong, C. and Xie, X.M., J. Colloid Interface Sci., 2012, 381: 107

    Article  CAS  Google Scholar 

  32. Shi, F.K., Wang, X.P., Guo, R.H., Zhong, M. and Xie, X.M., J. Mater. Chem. B, 2015, 3: 1187

    Article  CAS  Google Scholar 

  33. Zhong, M., Liu, X.Y., Shi, F.K., Zhang, L.Q., Wang, X.P., Cheetham, A.G., Cui, H.G. and Xie, X.M., Soft Matter, 2015, 11: 4235

    Article  CAS  Google Scholar 

  34. Zhong, M., Liu, Y.T. and Xie, X.M., J. Mater. Chem. B, 2015, 3: 4001

    Article  CAS  Google Scholar 

  35. Zhong, M., Shi, F.K., Liu, Y.T., Liu, X.Y. and Xie, X.M., Chin. Chem. Lett., 2016, 27: 312

    Article  CAS  Google Scholar 

  36. Yang, J., Gong, C., Shi, F.K. and Xie, X.M., J. Phys. Chem. B, 2012, 116: 12038

    Article  CAS  Google Scholar 

  37. Shi, F.K., Zhong, M., Zhang, L.Q., Liu, X.Y. and Xie, X.M., Acta Polymerica Sinica (in Chinese), DOI: 10.11777/j.issn1000-3304.2017.16162

  38. Shi, F., Zhong, M., Zhang, L., Liu, X.Y. and Xie, X.M., J. Mater. Chem. B, 2016, 4: 6221

    Article  CAS  Google Scholar 

  39. Zhang, L.Q., Chen, L.W., Zhong, M., Shi, F.K., Liu, X.Y. and Xie, X.M., Chinese J. Polym. Sci., 2016, 34: 1261

    Article  CAS  Google Scholar 

  40. Zhong, M., Liu, Y.T., Liu, X.Y., Shi, F.K., Zhang, L.Q., Zhu, M.F. and Xie, X.M., Soft Matter, 2016, 12: 5420

    Article  CAS  Google Scholar 

  41. Duan, Z.Q., Zhong, M., Shi, F.K. and Xie, X.M., Chin. Chem. Lett., 2016, DOI: 10.1016/j.cclet.2016.04.002

    Google Scholar 

  42. Lin, W.C., Marcellan, A., Hourdet, D. and Creton, C., Soft Matter, 2011, 7: 6578

    Article  CAS  Google Scholar 

  43. Lin, W.C., Fan, W., Marcellan, A., Hourdet, D. and Creton, C., Macromolecules, 2010, 43: 2554

    Article  CAS  Google Scholar 

  44. Na, Y.H., Tanaka, Y., Kawauchi, Y., Furukawa, H., Sumiyoshi, T., Gong, J.P. and Osada, Y., Macromolecules, 2006, 39: 4641

    Article  CAS  Google Scholar 

  45. Zhao, Y., Nakajima, T., Yang, J. J., Kurokawa, T., Liu, J., Lu, J., Mizumoto, S., Sugahara, K., Kitamura, N., Yasuda, K., Daniels, A.U.D. and Gong, J.P., Adv. Mater., 2014, 26: 436

    Article  Google Scholar 

  46. Baumberger, T., Caroli, C. and Martina, D., Eur. Phys. J. E, 2006, 21: 81

    Article  CAS  Google Scholar 

  47. Rose, S., Dizeux, A., Narita, T., Hourdet, D. and Marcellan, A., Macromolecules, 2013, 46: 4095

    Article  CAS  Google Scholar 

  48. Kong, H.J., Wong, E. and Mooney, D.J., Macromolecules, 2003, 36: 4582

    Article  CAS  Google Scholar 

  49. Yang, J., Zhao, J.J., Han, C.R. and Duan, J.F., Compos. Sci. Technol., 2014, 95: 1

    Article  CAS  Google Scholar 

  50. Zhou, T.H., Ruan, W.H., Rong, M.Z., Zhang, M.Q. and Mai, Y.L., Adv. Mater., 2007, 19: 2667

    Article  CAS  Google Scholar 

  51. Dixon, D.A., Dobbs, K.D. and Valentini, J.J., J. Phys. Chem., 1994, 98: 13435

    Article  CAS  Google Scholar 

  52. Sekine, Y., Takagi, H., Sudo, S., Kajiwara, Y., Fukazawa, H. and Ikeda-Fukazawa, T., Polymer, 2014, 55: 6320

    Article  CAS  Google Scholar 

  53. Sekine, Y. and Ikeda-Fukazawa, T., J. Chem. Phys., 2009, 130: 034501

    Article  Google Scholar 

  54. Monemian, S. and Korley, L.T.J., Macromolecules, 2015, 48: 7146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-ming Xie  (谢续明).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21474058 and 51633003), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. LK1404), Tsinghua University Scientific Research Project (No. 2014Z22069), and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. OIC-201601006).

Electronic supplementary material

10118_2017_1869_MOESM1_ESM.pdf

Toughening Mechanism of Nanocomposite Physical Hydrogels Fabricated by a Single Gel Network with Dual Crosslinking — The Roles of the Dual Crosslinking Points

Supplementary material, approximately 13.3 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Fk., Zhong, M., Zhang, Lq. et al. Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking — The roles of the dual crosslinking points. Chin J Polym Sci 35, 25–35 (2017). https://doi.org/10.1007/s10118-017-1869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1869-x

Keywords

Navigation