Skip to main content
Log in

Regio- and Stereoselective Polymerization of Bio-based Ocimene by Rare-Earth Metal Catalysts

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex 1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-sandwich benzyl fluorenyl scandium complex 4 and pyridyl-methylene-fluorenyl rare-metal complexes 5a–5c. Complexes 1, 4 and 5a–5c show trans-1,2-regioselectivities and high activities, of which 5c exhibits excellent isoselectivity (mmmm>99%). Conversely, complexes 2 and 3 promote β-ocimene polymerization to produce isotactic cis-1,4-polyocimenes (cis-1,4>99%, mm>95%). Diblock copolymers cis-1,4-PIP-block-cis-1,4-POc and cis-1,4-PBD-block-cis-1,4-POc are obtained in one-pot reactions of β-ocimene with isoprene and butadiene using complex 3. Epoxidation and hydroxylation of polyocimene afford functionalized polyolefins with enhanced Tg (from −20 °C to 79 °C and 74 °C) and hydrophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gibb, B. C. Plastics are forever. Nat. Chem. 2019, 11, 394–395.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50, 1762–1773.

    Article  PubMed  CAS  Google Scholar 

  4. Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol. Rapid Commun. 2016, 37, 9–28.

    Article  PubMed  CAS  Google Scholar 

  5. Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871.

    Article  PubMed  CAS  Google Scholar 

  6. John, G.; Nagarajan, S.; Vemula, P. K.; Silverman, J. R.; Pillai, C. K. S. Natural monomers: a mine for functional and sustainable materials—occurrence, chemical modification and polymerization. Prog. Polym. Sci. 2019, 92, 158–209.

    Article  CAS  Google Scholar 

  7. Hong, M.; Chen, E. Y. X. Future directions for sustainable polymers. Trends Chem. 2019, 1, 148–151.

    Article  CAS  Google Scholar 

  8. Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 2008, 41, 9491–9504.

    Article  CAS  Google Scholar 

  9. Winnacker, M. Pinenes: abundant and renewable building blocks for a variety of sustainable polymers. Angew. Chem. Int. Ed. 2018, 57, 14362–14371.

    Article  CAS  Google Scholar 

  10. Stempfle, F.; Ortmann, P.; Mecking, S. l_ogg-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 2016, 116, 4597–4641.

    Article  PubMed  CAS  Google Scholar 

  11. Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary perspective: there is a great future in sustainable polymers. Macromolecules 2017, 50, 3733–3750.

    Article  CAS  Google Scholar 

  12. Jiang, Y.; Zhang, Z.; Li, S.; Cui, D. Coordination polymerization of renewable (E)-4,8-dimethyl-1,3,7-nonatriene by rare-earth metal catalysts. Chin. J. Chem. 2022, 40, 1939–1944.

    Article  CAS  Google Scholar 

  13. Jiang, Y.; Kang, X.; Zhang, Z.; Li, S.; Cui, D. Syndioselective 3,4-polymerization of 1-phenyl-1,3-butadiene by rare-earth metal catalysts. ACS Catal. 2020, 10, 5223–5229.

    Article  CAS  Google Scholar 

  14. Liu, B.; Li, S.; Wang, M.; Cui, D. Coordination polymerization of renewable 3-methylenecyclopentene with rare-earth-metal precursors. Angew. Chem. Int. Ed. 2017, 56, 4560–4564.

    Article  CAS  Google Scholar 

  15. Wahlen, C.; Frey, H. Anionic polymerization of terpene monomers: new options for bio-based thermoplastic elastomers. Macromolecules 2021, 54, 7323–7336.

    Article  CAS  Google Scholar 

  16. Wadgaonkar, S. P.; Wagner, M.; Baptista, L. A.; Cortes-Huerto, R.; Frey, H. Mueller, A. H. E., Anionic polymerization of the terpene-based diene beta-ocimene: complex mechanism due to stereoisomer reactivities. Macromolecules 2023, 56, 664–677.

    Article  CAS  Google Scholar 

  17. Sahu, P.; Bhowmick, A. K. Redox emulsion polymerization of terpenes: mapping the effect of the system, structure, and reactivity. Ind. Eng. Chem. Res. 2019, 58, 20946–20960.

    Article  CAS  Google Scholar 

  18. Radchenko, A. V.; Bouchekif, H.; Peruch, F. Triflate esters as in-situ generated initiating system for carbocationic polymerization of vinyl ethers, isoprene, myrcene and ocimene. Eur. Polym. J. 2017, 89, 34–41.

    Article  CAS  Google Scholar 

  19. Peng, D.; Du, G.; Zhang, P.; Yao, B.; Li, X.; Zhang, S. Regte- and stereochemical control in ocimene polymerization by halfsandwich rare-earth metal dialkyl complexes. Macromol. Rapid Commun. 2016, 37, 987–992.

    Article  PubMed  CAS  Google Scholar 

  20. Lamparelli, D. H.; Paradiso, V.; Della Monica, F.; Proto, A.; Guerra, S.; Giannini, L.; Capacchione, C. Toward more sustainable elastomers: stereoselective copolymerization of linear terpenes with butadiene. Macromolecules 2020, 53, 1665–1673.

    Article  Google Scholar 

  21. Lamparelli, D. H.; Paradiso, V.; Capacchione, C. New elastomeric materials from biomass: stereoselective polymerization of linear terpenes and their copolymerization with butadiene by using a cobalt complex with phosphane ligands. Rubber Chem. Technol. 2020, 93, 605–614.

    Article  CAS  Google Scholar 

  22. Valencia, L.; Enríquez-Medrano, F. J.; López González, H. R.; Handa, R.; Caballero, H. S.; Carrizales, R. M.; Olivares-Romero, J. L.; Díaz de León Gómez, R. E. Bio-elastomers based on polyocimene synthesized via coordination polymerization using neodymium-based catalytic systems. RSC Adv. 2020, 10, 36539–36545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Naddeo, M.; Buonerba, A.; Luciano, E.; Grassi, A.; Proto, A.; Capacchione, C. Stereoselective polymerization of biosourced terpenes β-myrcene and β-ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer 2017, 131, 151–159.

    Article  CAS  Google Scholar 

  24. Zhang, S.; Han, L.; Ma, H.; Liu, P.; Shen, H.; Lei, L.; Li, C.; Yang, L.; Li, Y. Investigation on synthesis and application performance of elastomers with biogenic myrcene. Ind. Eng. Chem. Res. 2019, 58, 12845–12853.

    Article  CAS  Google Scholar 

  25. Zhang, J.; Lu, J.; Su, K.; Wang, D.; Han, B. Bio-based beta-myrcene-modified solution-polymerized styrene-butadiene rubber for improving carbon black dispersion and wet skid resistance. J. Appl. Polym. Sci. 2019, 136, 48159.

    Article  Google Scholar 

  26. Ren, X.; Guo, F.; Fu, H.; Song, Y.; Li, Y.; Hou, Z. Scandium-catalyzed copolymerization of myrcene with ethylene and propylene: convenient syntheses of versatile functionalized polyolefins. Polym. Chem. 2018, 9, 1223–1233.

    Article  CAS  Google Scholar 

  27. Loughmari, S.; Hafid, A.; Bouazza, A.; El Bouadili, A.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of beta-myrcene from a lanthanide-based catalyst: access to bio-sourced elastomers. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 2898–2905.

    Article  CAS  Google Scholar 

  28. Liu, B.; Liu, D.; Li, S.; Sun, G.; Cui, D. High trans-1,4 (co)polymerization of beta-myrcene and isoprene with an iminophosphonamide lanthanum catalyst. Chinese J. Polym. Sci. 2016, 34, 104–110.

    Article  Google Scholar 

  29. Liu, B.; Li, L.; Sun, G.; Liu, D.; Li, S.; Cui, D. Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chem. Commun. 2015, 51, 1039–1041.

    Article  CAS  Google Scholar 

  30. Liu, B.; Han, B.; Zhang, C.; Li, S.; Sun, G.; Cui, D. Renewable beta-myrcene polymerization initiated by lutetium alkyl complexes ligated by imidophosphonamido ligand. Chinese J. Polym. Sci. 2015, 33, 792–796.

    Article  CAS  Google Scholar 

  31. Li, W.; Zhao, J.; Zhang, X.; Gong, D. Capability of PN3-type cobalt complexes toward selective (co-)polymerization of myrcene, butadiene, and isoprene: access to biosourced polymers. Ind. Eng. Chem. Res. 2019, 58, 2792–2800.

    Article  CAS  Google Scholar 

  32. Lamparelli, D. H.; Kleybolte, M. M.; Winnacker, M.; Capacchione, C. Sustainable myrcene-based elastomers via a convenient anionic polymerization. Polymers 2021, 13, 838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kitphaitun, S.; Chaimongkolkunasin, S.; Manit, J.; Makino, R.; Kadota, J.; Hirano, H.; Nomura, K. Ethylene/myrcene copolymers as new bio-based elastomers prepared by coordination polymerization using titanium catalysts. Macromolecules 2021, 54, 10049–10058.

    Article  CAS  Google Scholar 

  34. Jia, X.; Li, W.; Zhao, J.; Yi, F.; Luo, Y.; Gong, D. Dual catalysis of the selective polymerization of biosourced myrcene and methyl methacrylate promoted by salicylaldiminato cobalt(II) complexes with a pendant donor. Organometallics 2019, 38, 278–288.

    Article  CAS  Google Scholar 

  35. Hulnik, M. I.; Vasilenko, I. V.; Radchenko, A. V.; Peruch, F.; Ganachaud, F.; Kostjuk, S. V. Aqueous cationic homo- and co-polymerizations of -myrcene and styrene: a green route toward terpene-based rubbery polymers. Polym. Chem. 2018, 9, 5690–5700.

    Article  CAS  Google Scholar 

  36. Hahn, C.; Wagner, M.; Mueller, A. H. E.; Frey, H. MyrDOL, a Protected dihydroxyfunctional diene monomer derived from beta-myrcene: functional polydienes from renewable resources via anionic polymerization. Macromolecules 2022, 55, 4046–4055.

    Article  CAS  Google Scholar 

  37. Glatzel, J.; Noack, S.; Schanzenbach, D.; Schlaad, H. Anionic polymerization of dienes in ‘green’ solvents. Polym. Int. 2021, 70, 181–184.

    Article  CAS  Google Scholar 

  38. Georges, S.; Toure, A. O.; Visseaux, M.; Zinck, P. Coordinative chain transfer copolymerization and terpolymerization of conjugated dienes. Macromolecules 2014, 47, 4538–4547.

    Article  CAS  Google Scholar 

  39. Gan, Q.; Xu, Y.; Huang, W.; Luo, W.; Hu, Z.; Tang, F.; Jia, X.; Gong, D. Utilization of bio-sourced myrcene for efficient preparation of highly cis-1,4 regular elastomer via a neodymium catalyzed copolymerization strategy. Polym. Int. 2020, 69, 763–770.

    Article  CAS  Google Scholar 

  40. Dev, A.; Roesler, A.; Schlaad, H. Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of beta-myrcene. Polym. Chem. 2021, 12, 3084–3087.

    Article  CAS  Google Scholar 

  41. Bolton, J. M.; Hillmyer, M. A.; Hoye, T. R. Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett. 2014, 3, 717–720.

    Article  PubMed  CAS  Google Scholar 

  42. Avila-Ortega, A.; Aguilar-Vega, M.; Bastarrachea, M. I. L.; Carrera-Figueiras, C.; Campos-Covarrubias, M. Anionic synthesis of amine omega-terminated beta-myrcene polymers. J. Polym. Res. 2015, 22, 226.

    Article  Google Scholar 

  43. You, F.; Shi, W.; Yan, X.; Wang, X.; Shi, X. Polymerization of bio-derived conjugated dienes with rare-earth-metal complexes. Chem. Asian. J. 2022, 17, e202200892.

    Article  PubMed  CAS  Google Scholar 

  44. Banda-Villanueva, A.; Luis Gonzalez-Zapata, J.; Eduardo Martinez-Cartagena, M.; Magana, I.; Cordova, T.; Lopez, R.; Valencia, L.; Garcia Medina, S.; Medina Rodriguez, A.; Soriano, F.; Diaz de Leon, R. Synthesis and vulcanization of polymyrcene and polyfarnesene bio-based rubbers: influence of the chemical structure over the vulcanization process and mechanical properties. Polymers 2022, 14, 1406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Luk, S. B.; Maric, M. Polymerization of biobased farnesene in miniemulsions by nitroxide-mediated polymerization. ACS Omega 2021, 6, 4939–4949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. You, F.; Kang, X.; Nishiura, M.; Zhai, J.; Xu, S.; Wang, J.; Shi, X.; Hou, Z. Living 3,4-isoselective (co)polymerization of biobased beta-farnesene catalyzed by phosphine-functionalized fluorenyl rare-earth metal. Macromolecules 2022, 55, 5049–5057.

    Article  CAS  Google Scholar 

  47. Luk, S. B.; Maric, M. Farnesene and norbornenyl methacrylate block copolymers: application of thiol-ene clicking to improve thermal and mechanical properties. Polymer 2021, 230, 124106.

    Article  CAS  Google Scholar 

  48. Cepeda Tovar, V. A.; Rubio Rios, A.; Saenz Galindo, A.; Rosales Marines, L.; Farias Cepeda, L. Bio- based elastomers by vinyl acrylate (vac)-co-farnesene (fa) emulsion copolimerization. Afinidad 2022, 79, 44–48.

    Google Scholar 

  49. Sahu, P.; Oh, J. S. Biobased elastomer from renewable biomass beta-farnesene: synthesis, characterization, and properties. Ind. Eng. Chem. Res. 2022, 61, 11815–11824.

    Article  CAS  Google Scholar 

  50. Lamparelli, D. H.; Winnacker, M.; Capacchione, C. Stereoregular polymerization of acyclic terpenes. chemPlusChem 2022, 87, e202100366.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, B.; Li, L.; Sun, G.; Liu, J.; Wang, M.; Li, S.; Cui, D. 3,4-Polymerization of isoprene by using NSN- and NPN-ligated rare earth metal precursors: switching of stereo selectivity and mechanism. Macromolecules 2014, 47, 4971–4978.

    Article  CAS  Google Scholar 

  52. Valente, A.; Stoclet, G.; Bonnet, F.; Mortreux, A.; Visseaux, M.; Zinck, P. Ispprnee-styrene chain shuttling copolymerization mediated by a lanthanide half-sandwich complex and a lanthanidocene: straightforward access to a new type of thermoplastic elastomers. Angew. Chem. Int. Ed. 2014, 53, 4638–4641.

    Article  CAS  Google Scholar 

  53. Bonnet, F.; Visseaux, M.; Pereira, A.; Bouyer, F.; Barbier-Baudry, D. Stereospecific polymerization of isoprene with Nd(BH4)3(THF)3/MgBu2 as catalyst. Macromol. Rapid Commun. 2004, 25, 873–877.

    Article  CAS  Google Scholar 

  54. Liu, B.; Wang, X.; Pan, Y.; Lin, F.; Wu, C.; Qu, J.; Luo, Y.; Cui, D. Unprecedented 3,4-isoprene and cis-1,4-butadiene copolymers with controlled sequence distribution by single yttrium cationic species. Macromolecules 2014, 47, 8524–8530.

    Article  CAS  Google Scholar 

  55. Gao, W.; Cui, D. Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichloride precursors. J. Am. Chem. Soc. 2008, 130, 4984–4991.

    Article  PubMed  CAS  Google Scholar 

  56. Kaita, S.; Hou, Z.; Nishiura, M.; Doi, Y.; Kurazumi, J.; Horiuchi, A. C.; Wakatsuki, Y. Ultimately specific 1,4-cis polymerization of 1,3-butadiene with a novel gadolinium catalyst. Macromol. Rapid Commun. 2003, 24, 179–184.

    Article  CAS  Google Scholar 

  57. Wang, Q.; Huang, J.; Li, S.; Cui, D. Preparation of hydroxyl functionalized cis-1,4 polydienes. Acta Polymerica Sinica (in Chinese) 2022, 53, 474–481.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the open research fund program of Science and Technology on Aerospace Chemical Power Laboratory (No. STACPL120221B03) and the National Natural Science Foundation of China (Nos. s22175059, 52073275 and U21A20279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Guo or Shi-Hui Li.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QY., Sang, LP., Zhang, Z. et al. Regio- and Stereoselective Polymerization of Bio-based Ocimene by Rare-Earth Metal Catalysts. Chin J Polym Sci 42, 223–229 (2024). https://doi.org/10.1007/s10118-023-3047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3047-7

Keywords

Navigation