Skip to main content
Log in

Preparation of Chemically Recyclable Poly(ether-alt-ester) by the Ring Opening Polymerization of Cyclic Monomers Synthesized by Coupling Glycolide and Epoxides

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyester and polyether are two key oxygenated polymers, and completely alternative sequence of poly(ester-alt-ether) could efficiently combine the advantages (including flexibility, degradability, etc.) of both segments. Currently, despite their copolymers could be synthesized from one-pot mixture of cyclic esters and epoxides, perfectly alternative microstructure is very challenging to realize and typically restricted to certain monomer pairs. Moving forward, synthesizing poly(ester-alt-ether) from commercially available and largescale monomers would be a significant advance. For example, successfully commercialized poly(glycolic acid) (PGA), which is not easily soluble in polymers due to its high crystallinity and is brittle and difficult to control the degradation cycle, would encounter a new paradigm if engineered into poly(ester-alt-ether). In this work, starting from the design of monomer with hybrid structures, we successfully synthesized a series of 1,4-dioxan-2-one containing different substituents based on glycolide (GA) and epoxides using commercially available Salen-Cr(III) and PPNCl catalytic systems. The new monomers underwent ring-opening polymerization (ROP) to form a series of poly(ester-alt-ether) with perfectly alternating glycolic acid and propylene glycol repeat units under catalytic system of thiourea/base. The poly(ester-alt-ether) have significantly lower glass-transition temperature than PGA. Additionally, the poly(ester-alt-ether) can be chemically recovered to monomer using Sn(Oct)2 or 1,8-diazabicyclo[5.4.0]undecane-7-ene (DBU) as a catalyst in solution, thus establishing a closed-loop life cycle. From monomers derived from GA and epoxides, this work furnishes a novel strategy for the synthesis of poly(ester-alt-ether) with chemical recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    Article  PubMed  CAS  Google Scholar 

  2. Haussler, M.; Eck, M.; Rothauer, D.; Mecking, S. Cloeed-loop recycling of polyethylene-like materials. Nature 2021, 590, 423–427.

    Article  PubMed  Google Scholar 

  3. Masutani, K.; Kimura, Y.; Li, S. M.; Hu, Y. F.; Müller, A. J.; Ávila, M.; Saenz, G.; Salazar, J.; Raquez, J. M.; Ramy-Ratiarison, R.; Murariu, M.; Dubois, P.; Ruellan, A.; Ducruet, V.; Domenek, S.; Peponi, L.; Mújica-García, A.; Kenny, J. M.; Bitinis, N.; Verdejo, R.; López-Manchado, M. A.; Lagarón, J. M.; Cabedo, L.; Zhou, Q.; Berglund, L. A.; Catalá, R.; López-Carballo, G.; Hernández-Muñoz, P.; Gavara, R.; Armentano, I.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Fukushima, K.; Camino, G.; Fiori, S.; Peltzer, M. A.; Beltrán-Sanahuja, A. Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. The Royal Society of Chemistry: 2014.

  4. Coulembier, O.; Martin-Vaca, B.; Bourisso, D.; Fastnacht, K. V.; Datta, P. P.; Kiesewetter, M. K.; Naumann, S.; Lecomte, P.; Jérôme, C.; Guillaume, S. M.; Fukushima, K.; Taton, D.; Siefker, D.; Zhang, D. H.; Wolf, T.; Wurm, F. R.; Zhao, W. C.; Zhang, Y. T.; Bossion, A.; Heifferon, K. V.; Zivic, N.; Long, T. E.; Sardon, H.; Ryan, M. D.; Pearson, R. M.; Miyake, G. M.; Jehanno, C.; Demarteau, J.; Dove, A. P. Organic Catalysis for Polymerisation. The Royal Society of Chemistry: 2018.

  5. Li, J.; Stayshich, R. M.; Meyer, T. Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J. Am. Chem. Soc. 2011, 133, 6910–6913.

    Article  PubMed  CAS  Google Scholar 

  6. Lu, Y.; Swisher, J. H.; Meyer, T. Y.; Coates, G. W. Chirality-directed regioselectivity: an approach for the synthesis of alternating poly(lactic-co-glycolic acid). J. Am. Chem. Soc. 2021, 143, 4119–4124.

    Article  PubMed  CAS  Google Scholar 

  7. Diaz, C.; Ebrahimi, T.; Mehrkhodavandi, P. Cationic indium complexes for the copolymerization of functionalized epoxides with cyclic ethers and lactide. Chem. Commun. 2019, 55, 3347–3350.

    Article  CAS  Google Scholar 

  8. Chwatko, M.; Lynd, N. A. Statistical copolymerization of epoxides and lactones to high molecular weight. Macromolecules 2017, 50, 2714–2723.

    Article  CAS  Google Scholar 

  9. Liu, D.; Bielawski, C. W. Synthesis of degradable poly[(ethylene glycol)-co-(glycolic acid)] via the post-polymerization oxyfunctionalization of poly(ethylene glycol). Macromol. Rapid Commun. 2016, 37, 1587–1592.

    Article  PubMed  CAS  Google Scholar 

  10. Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72.

    Article  Google Scholar 

  11. Stosser, T.; Sulley, G. S.; Gregory, G. L.; Williams, C. K. Easy access to oxygenated block polymers via switchable catalysis. Nat. Commun. 2019, 10, 2668.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ren, W. M.; Wang, R. J.; Ren, B. H.; Gu, G. G.; Yue, T. J. Mechanism-inspired design of heterodinuclear catalysts for copolymerization of epoxide and lactone. Chinese J. Polym. Sci. 2020, 38, 950–957.

    Article  CAS  Google Scholar 

  13. Kerr, R. W. F.; Williams, C. K. Zr(IV) Catalyst for the ring-opening copolymerization of anhydrides (A) with epoxides (B), oxetane (B), and tetrahydrofurans (C) to make ABB- and/or ABC-poly(ester-alt-ethers). J. Am. Chem. Soc. 2022, 144, 6882–6893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, H.; Hu, S.; Zhao, J.; Zhang, G. Phosphazene-catalyzed alternating copolymerization of dihydrocoumarin and ethylene oxide: weaker is better. Macromolecules 2017, 50, 4198–4205.

    Article  CAS  Google Scholar 

  15. Hu, S.; Dai, G.; Zhao, J.; Zhang, G. Ring-opening alternating copolymerization of epoxides and dihydrocoumarin catalyzed by a phosphazene superbase. Macromolecules 2016, 49, 4462–4472.

    Article  CAS  Google Scholar 

  16. Jung, H. J.; Goonesinghe, C.; Mehrkhodavandi, P. Temperature triggered alternating copolymerization of epoxides and lactones via pre- sequenced spiroorthoester intermediates. Chem. Sci. 2022, 13, 3713–3718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Van Zee, N. J.; Coates, G. W. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters. Chem. Commun. 2014, 50, 6322–6325.

    Article  CAS  Google Scholar 

  18. Ren, W. M.; Gao, H. J.; Yue, T. J. Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-approlcctoee mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci. 2021, 39, 1013–1019.

    Article  CAS  Google Scholar 

  19. Nishida, H.; Yamashita, M.; Endo, T.; Tokiwa, Y. Equilibrium polymerization behavior of 1,4-dioxan-2-one in bulk. Macromolecules 2000, 33, 6982–6986.

    Article  CAS  Google Scholar 

  20. Li, K.; Li, Z.; Duan, S.; Shen, Y.; Li, Z. Organobase/urea catalyzed ring opening polymerization of 3-methyl-1, 4-dioxan-2-one to prepare chemically recyclable poly(ether ester). J. Polym. Sci. 2021, 60, 3331–3340.

    Article  Google Scholar 

  21. MacDonald, J. P.; Shaver, M. P. An aromatic/aliphatic polyester prepared via ring-opening polymerisation and its remarkably selective and cyclable depolymerisation to monomer. Polym. Chem. 2016, 7, 553–559.

    Article  CAS  Google Scholar 

  22. Li, M. Q.; Luo, Z. X.; Yu, X. Y.; Tian, G. Q.; Wu, G.; Chen, S. C.; Wang, Y. Z. Ring-opening polymerization of a seven-membered lactone toward a biocompatible, degradable, and recyclable semi-aromatic polyester. Macromolecules. 2023, 56, 2465–2475.

    Article  CAS  Google Scholar 

  23. Bechtold, K.; Hillmyer, M. A.; Tolman, W. B. Perfectly alternating copolymer of lactic acid and ethylene oxide as a plasticizing agent for polylactide. Macromolecules. 2021, 34, 8641–8648.

    Article  Google Scholar 

  24. Li, Z.; Shen, Y.; Li, Z. Chemical upcycling of poly(3-hydroxybutyrate) into bicyclic ether-ester monomers toward value-added, degradable, and recyclable poly(ether ester). ACS. Sustainable Chem. Eng. 2022, 10, 8228–8238.

    Article  CAS  Google Scholar 

  25. Li, Z.; Zhao, D.; Shen, Y.; Li, Z. Rhg-opening polymerization of enantiopure bicyclic ether-ester monomers toward closed-loop recyclable and crystalline stereoregular polyesters via chemical upcycling of bioplastic. Angew. Chem. Int. Ed. 2023, 22, e202302101.

    Google Scholar 

  26. Xu, J. B.; Chen, Y.; Xiao, W. H.; Zhang, J.; Bu, M. L.; Zhang, X. Q.; Lei, C. H.Studying the ring-opening polymerization of 1,5-dioxepan-2-one with organocatalysts. Polymers 2019, 11, 1642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tu, Y. M.; Wang, X. M.; Yang, X.; Fan, H. Z.; Gong, F. L.; Cai, Z. Z.; Zhu, J. B. Biobased high-performance aromatic-aliphatic polyesters with complete recyclability. J. Am. Chem. Soc. 2021, 143, 20591–20597.

    Article  PubMed  CAS  Google Scholar 

  28. Grablowitz, H.; Lendlein, A. Synthesis and characterization of α,ω-dihydroxy-telechelic oligo(p-dioxanone). J. Mater. Chem. 2007, 17, 4050–4056.

    Article  CAS  Google Scholar 

  29. Fan, H. Z.; Yang, X.; Wu, Y. C.; Cao, Q.; Cai, Z. Z.; Zhu, J. B. Leveraging the monomer structure for high-performance chemically recyclable semiaromatic polyesters. Polym. Chem. 2023, 14, 747–753.

    Article  CAS  Google Scholar 

  30. Hu, S.; Liu, L.; Li, H.; Pahovnik, D.; Hadjichristidis, N.; Zhou, X.; Zhao, J. Tuning the properties of ester-based degradable polymers by inserting epoxides into poly(t-caprolactone). Chem. Asian J. 2023, 18, e202201097.

    Article  PubMed  CAS  Google Scholar 

  31. Hu, S.; Zhao, J.; Zhang, G. Noncopolymerization approach to copolymers via concurrent transesterification and ring-opening reactions. ACS Macro Lett. 2016, 5, 40–44.

    Article  PubMed  Google Scholar 

  32. Balasanthiran, V.; Chatterjee, C.; Chisholm, M. H.; Harrold, N. D.; RajanBabu, T. V.; Warren, G. A. Coupling of propylene oxide and lactide at a porphyrin chromium(III) center. J. Am. Chem. Soc. 2015, 137, 1786–1789.

    Article  PubMed  CAS  Google Scholar 

  33. Liang, Z. Z.; Li, X.; Hu, C. Y.; Duan, R. L.; Wang, X. H.; Pang, X.; Chen, X. S. Copolymerization of PO/CO2 and lactide by a dinuclear salen-Cr(III) complex: gradient and random copolymers with modificable microstructure. Chinese J. Polym. Sci. 2022, 40, 1028–1033.

    Article  CAS  Google Scholar 

  34. Datta, P. P.; Pothupitiya, J. U.; Kiesewetter, E. T.; Kiesewetter, M. K. Coupled equilibria in H-bond donating ring-opening polymerization: The effective catalyst-determined shift of a polymerization equilibrium. Eur. Polym. J. 2017, 95, 671–677.

    Article  CAS  Google Scholar 

  35. Kazakov, O. I.; Kiesewetter, M. K. Cocatalyst binding effects in organocatalytic ring-opening polymerization of l-lactide. Macromolecules 2015, 48, 6121–6126.

    Article  CAS  Google Scholar 

  36. Spink, S. S.; Kazakov, O. I.; Kiesewetter, E. T.; Kiesewetter, M. K. Rate accelerated organocatalytic ring-opening polymerization of l-lactide via the application of a bis(thiourea) H-bond donating cocatalyst. Macromolecules 2015, 48, 6127–6131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hewawasam, R. S.; Kalana, U. L. D. I.; Dharmaratne, N. U.; Wright, T. J.; Bannin, T. J.; Kiesewetter, E. T.; Kiesewetter, M. K. Bisurea and bisthiourea H-bonding organocatalysts for ring-opening polymerization: cues for the catalyst design. Macromolecules 2019, 52, 9232–9237.

    Article  CAS  Google Scholar 

  38. Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonstrained y-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules 2018, 51, 9317–9322.

    Article  CAS  Google Scholar 

  39. Dharmaratne, N. U.; Pothupitiya, J. U.; Kiesewetter, M. K. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization. Org. Biomol. Chem. 2019, 17, 3305–3313.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 2016, 8, 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  41. Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020, 5, 501–516.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2021YFA1501700), the Science and Technology Development Plan of Jilin Province (Nos. 20230101042JC and 20210201059GX), the National Natural Science Foundation of China, Basic Science Center Program (No. 51988102), and the National Natural Science Foundation of China (Nos. 52203017 and 52073272).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Yang Hu or Xuan Pang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3040_MOESM1_ESM.pdf

Preparation of Chemically Recyclable Poly(ether-alt-ester) by the Ring Opening Polymerization of Cyclic Monomers Synthesized by Coupling Glycolide and Epoxides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Liang, ZZ., Niu, MX. et al. Preparation of Chemically Recyclable Poly(ether-alt-ester) by the Ring Opening Polymerization of Cyclic Monomers Synthesized by Coupling Glycolide and Epoxides. Chin J Polym Sci 42, 168–175 (2024). https://doi.org/10.1007/s10118-023-3040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3040-1

Keywords

Navigation